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Abstract— The need for a fire-induced flashover probability 
index (FIFPI) for Eskom’s transmission lines (South Africa) 
became evident soon after the installation the Advanced Fire 
Information System (AFIS) in 2004. Thousands of wildfires 
were detected by satellites close to transmission lines, but 
only a small percentage (4%) of these fires caused a 
flashover. Historical flashover data was compared to satellite 
fire information as well as air temperature, relative 
humidity, wind speed and wind direction within a logistic 
regression analysis to develop a flashover prediction model. 
The FIFPI model was able to predict problem fires with a 
misclassification cost of only 3.87%. The aim of this study 
was to develop a prediction model with the ability to 
accurately predict fire-induced flashover occurrences on 
Eskom transmission lines in order to reduce the large 
amount of false alarms (SMS and email messages) produced 
annually by AFIS. 
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I.  INTRODUCTION 

During the 2004 fire season, South Africa’s largest power 
company Eskom, implemented a satellite based fire information 
for the first time to help combat flashovers caused by wildfires 
underneath transmission lines. The quality of electricity supply 
through transmission lines are severely affected (in the form of 
line faults) by natural phenomena such as, bird streamers, 
lightning, fires and pollution. Flashovers cause very short 
interruptions in the supply of power and these in turn have major 
financial implication to customers with continuous process 
factories.  

Eskom operates 28 000 km of high voltage transmission lines  
(132kV to 765kV) and is South Africa's national electricity 
utility. Electricity is generated predominantly by means of coal-
fired power stations and one nuclear station with three hydro 
peaking stations. This constitutes 95% of the electricity of Africa 
(Anon 2004). The rights-of-way (ROW or servitudes) of these 
power lines cover large areas and traverse a number of biomes, 
ranging from arid vegetation through grasslands and savanna, to 
tropical vegetation. 

The Council for Scientific and Industrial Research (CSIR) in 
collaboration with Eskom developed the Advanced Fire 
Information System (AFIS) with the main focus on the 
prediction, detection and assessment of wildfires in South 
Africa. The system combines fire detection information from the 
TERRA and AQUA MODIS (Moderate Resolution Imaging 
Spectro Radiometer) polar orbiting satellite sensors with the 
Meteosat Second Generation (MSG) geostationary satellite 
sensor from Eumetsat. As soon as a fire is detected within 3 km 
of a transmission line, a cell phone text message or email alert is 
automatically generated and sent to the relevant line manager as 
well as Eskom control centre.  

Because of its dielectric properties, air acts as an isolation 
medium between live conductors and the ground below it. 

During a fire, the properties of the air change as smoke particles 
fill the space between the ground and transmission line which 
could result in an electrical discharge or flashover to occur. The 
mechanism active during a fire-induced flashover of a power line 
is highly dynamic and complex and authors explain the 
phenomenon in different terms (Sukhnandan and Hoch 2002). In 
order to prevent the spread of fires underneath transmission lines 
early fire detection information is required to pinpoint the 
location and possibly provide additional info on the temperature 
and size. In the past Eskom line managers were dependant on 
information from local residents about fire occurrences and 
locations 

The problem with fire-induced flashovers is not entirely unique 
to South Africa – countries such as the U.S.A., Australia and 
Mexico also struggle with flashovers caused by fires (Primen, 
2001). The AFIS system has become a useful tool for the early 
detection of fires close to Eskom transmission lines. The ability 
to send SMS and email messages to the relevant person as soon 
as a fire is detected is one of the biggest advantages of the 
system (Frost et al. 2007). The problem, however, remains that 
thousands of fires are detected in the proximity of transmission 
lines annually, but only a small percentage of those fires cause a 
fire-induced flashover on the transmission lines (Vosloo, 2005). 
Studies have indicated that an average of 2% to 4% of all fires 
close to Eskom transmission lines cause a flashover (Vosloo, 
2005). In AFIS this equates to thousands of fire alert messages 
sent to Eskom transmission line managers annually of fires close 
to transmission lines that never lead to flashovers. The ability to 
predict the flashover danger that a fire will pose underneath an 
Eskom transmission line based on forecasted weather and 
environmental conditions will enable the prioritisation of AFIS 
alert messages by providing an indication of the flashover 
potential as part of the alert message. This in turn will help 
Eskom transmission line managers to first react to the fire alerts 
with the highest flashover potential, hopefully resulting in a 
quicker fire suppression which will lead to less fire-induced 
flashovers.  

Aicher (1949) has shown that atmospheric conditions play an 
important role in the triggering of a fire-induced flashover. The 
aim of this research is to analyse atmospheric (air temperature, 
relative humidity, wind speed and wind direction) conditions 
present around a transmission line during a fire-induced 
flashover in order to derive a flashover prediction model based 
on these key indicators. One aspect that seems to be very 
important is atmospheric conditions. The probability of a 
flashover under high Fire Danger Index (FDI) conditions is 
much higher than under low FDI conditions as demonstrated by 
Vosloo, (2005). This current research entails the development of 
a prediction model and testing of various environmental 
parameters including air temperature, relative humidity, wind 
speed and direction to determine which of these variables or 
combination of variables contribute most to fire-induced 
flashover events. 
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II. METHODOLOGY 

 
The development of a fire-induced flashover prediction model 
required the adoption of various image processing and data 
analysis techniques to deal with the variety of data sources that 
ranged from satellite imagery and GIS map layers to numerical 
weather forecasts. A variety of data sets were acquired for both 
the training of the prediction model as well as the validation of 
the results. With the MODIS active fire product as base layer, 
weather forecast variables served as input to the predictor data 
set of the model, while flashover statistics for 2007 provided the 
target data set within the logistic regression analysis.  

A. Target variable 

The main inputs for the development of the target variable as 
illustrated in Figure 1, were the MODIS active fire data, a shape 
file of the Eskom transmission grid and historical fire-induced 
flashover point records for 2007. In order to develop the target 
variable for the prediction model, two GIS functions were 
applied to extract MODIS active fire pixels close to Eskom 
transmission lines. The “buffer” function in ArcMap was used to 
create a 3 km buffer around all transmission lines in the study 
area. MODIS active fire pixels that fell within these buffer zones 
were extracted with the “clip” function and a new data set was 
created containing only the selected MODIS active fire pixels 
close to the transmission lines. 

A Python® script was written to test and correlate the proximity 
and date of each MODIS active fire (in buffer zone) in relation 
to historical flashover occurrences. A buffer of 3 km was created 
around all historical flashover points for 2007. This 3 km radius 
was chosen to ensure that only the 1 km² MODIS fire pixels 
related to the flashover would be classified and not other fires in 
the vicinity that had nothing to do with the flashover. The 3 km 
radius also made provision for fires that were burning towards 
the line. Grass fires can spread at a rate of 1.7 km h-1 (Cheney 
and Sullivan, 2008). MODIS fires that were detected within a 
radius of 3 km of a flashover point and that occurred on the same 
day as the flashover were classified as a “True” flashover and 
were assumed to be the fires that caused the fire-induced 
flashover. Fires that fell outside the 3 km flashover point buffers 
or that were on a different date from a flashover event were 
classified as a “False” flashover and were assumed not to be the 
cause of a flashover. 

 

Figure 1. Development of target variables 

B. Predictor variable 

The main inputs for the development of the predictor variables 

were the MODIS active fire data, a shape file of the Eskom 

transmission grid and four primary input data sets (air 

temperature, relative humidity, wind speed and wind direction). 

In order to develop the predictor variables for the prediction 

model, two GIS functions were applied to extract MODIS active 

fire pixels close to Eskom transmission lines. The “buffer” 

function in ArcMap was used to create a 3 km buffer around all 

transmission lines in the study area. MODIS active fire pixels 

that fell within these buffer zones were extracted with the “clip” 

function and a new data set was created containing only the 

selected MODIS active fires pixels close to the transmission 

lines.  

C. MODIS fire detection 

MODIS active fire satellite products are produced daily by the 
MODIS Direct Broadcast (DB) reception and processing 
systems located at the Satellite Application Centre (SAC) at 
Hartbeesthoek as well as the CSIR Meraka Institute in Pretoria. 
The collection 5 version of the MODIS fire detection algorithm 
(Giglio et al. 2003) produce daily active fire locations that feeds 
in to the Advanced Fire Information System (AFIS). An ASCII 
file is created after each satellite overpass from the Terra and 
Aqua satellites, including the following parameters, latitude and 
longitude of each fire, the time and the date of each fire location, 
the brightness temperature in Kelvin, the satellite ID and a 
confidence factor.  

D. Numerical weather forecasting 

Numerical meteorological forecast models (Marchuk, 1974) of 
the atmosphere are run daily and form the basis for routine 
weather forecasts provided by National Weather Services around 
the globe. In 2006 the South African Weather Service (SAWS) 
implemented the Unified model (SAWS, 2006) from the UK 
Met office. The model makes use of a horizontal resolution of 
12 km and consists of 38 vertical layers (Ndabambi and 
Poolman, 2007).  

The MODIS active fire data set was used as reference data 
source during the extraction of the numerical weather forecast 
data for every fire point. The following numerical weather 
forecast parameters were extracted for each of the MODIS fire 
pixel locations from the SAWS database: 

• Air Temperature (2 m above land surface). 

• Relative Humidity (2 m above land surface). 

• Wind Vectors (The geostrophic wind approximations 

are broken into its two horizontal components.  
 

The parameters were 14:00 pm (SAST) forecasts, predicted at 
08:00 am (SAST) daily. The time difference between the 14:00 
pm (SAST) forecast data and the MODIS active fire data were 
never more than an hour and thirty minutes. The U and V wind 
vectors were converted to wind speed and direction.  

 

E. Logistic Regression analysis 

Logistic regression (LR) is part of a category of statistical 
models called generalised linear models and allows one to 
predict a discrete outcome from a set of variables that may be 
continuous, discrete, dichotomous, or a mix of any of these. LR 
does not involve decision trees and is especially effective as a 
predictive analysis tool on non-linear data sets (Perlich et al. 
2003). The algorithm for logistic regression is    
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where y is the predicted value of the dependent variable, x is the 

independent variable, and b is the regression coefficient (i.e. the 

logit). 



III. RESULTS AND DISCUSSION 

 

Model prediction accuracies of each of the predictor variable 
combinations in Table 1 were calculated based on three 
statistical tests. These included the cross validated relative cost, 
misclassification cost and the Receiver Operating Characteristics 
(ROC) value for the learning and validation data sets (Perlich et 
al. 2003).  

Table 1.   Model predictions for different variable combinations 

 

The results were focused on the target class, “True” flashovers. 
The misclassification error on the validation data set (Table 1) 
illustrated the true capability of each of the predictor variable 
combinations to predict a fire-induced flashover. Of the 2248 
MODIS fire pixels tested in the logistic regression, 10% (224) of 
the pixels were left out of the model for validation purposes. The 
10% validation data was thus a fully independent data set on 
which the misclassification error (validation data) in the last 
column was calculated. By comparing the results in Table 1 for 
the different variable combinations, the combination of air 
temperature, relative humidity, wind speed and wind direction 
provided the lowest misclassification error on the validation data 
set of 3.87%, while recording a low cross validation error of only 
0.07%. The second best combination was the wind speed, 
relative humidity and air temperature variables which scored a 
misclassification error on the validation data set of 4.45% while 
also recording a cross validation error of 0.07%. The third best 
combination was the wind speed, relative humidity and wind 
direction group that showed a misclassification error on the 
validation data of 5.87% and a cross validation error of 0.10%. 
Lastly the wind speed and relative humidity combination showed 
a misclassification cost of 7.5% and the highest cross validation 
error of 0.13%. The Receiver Operator Characteristics (ROC) 
analysis for all the variable combinations showed a very high 
model accuracy of 0.98%, indicating a strong ability of 
predicting “True” flashover events for all the variable 
combinations 

The results confirm that the variable combination of air 
temperature, relative humidity, wind speed and wind direction 
provides the most accurate fire-induced flashover predictions 
and implies that each of them contribute something unique to the 
models prediction capabilities 

The relative importance test provided an analysis of the 
sensitivity of each of the variables in the logistic regression and 
assigned a relative importance (%) to each. Figure 2 illustrates 
the results from the relative importance test with the predictor 
variables on the Y axis and the relative importance (%) on the X 
axis. Wind direction was assigned the highest relative 
importance (primary splitter) by the LR analysis, followed by 
wind speed with an 80% importance. Relative humidity scored a 

50% importance while air temperature was the lowest of the four 
variables, with a 20% relative importance.  

The results from the logistic regression importance test indicate 
that wind direction is strongly correlated to the “True” flashover 
target category. Together with wind speed the two variables 
seem to outweigh the importance of air temperature and relative 
humidity. Wind direction is a much more complex variable 
compared to the other three variables. A 0 degree angle does not 
simply relate to a low flashover probability or a 360 degree angle 
to a high flashover probability. The non-linear nature of the LR 
might be better for describing the relationship between wind 
direction and fire-induced flashovers 

 

Figure 2.    Relative Importance test on predictor variables 

A. Development of the Fire-induced Flashover Probability   

Index (FIFPI) 

Based on the results obtained from the evaluation of the 

different models the LR was used to calculate the fire-induced 

flashover prediction model with air temperature, relative 

humidity, wind speed and wind direction as the main predictor 

variables. The logistic model formula computed the probability 

P of a “True” flashover based on the predictor variables. The 

logistic model formula (Sherrod, 2003) was calculated as: 
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Where βo is a constant and βi are coefficients of the predictor 
variables. The computed value, P, is a probability in the range 0 
to 1. The exp() function is e raised to a power.  

A maximum likelihood analysis was performed which provided 
the probability coefficients (parameters) for each of the predictor 
variables, which enabled the calculation of the FIFPI according 
to the logistic model formulae: 
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Where RH describes the relative humidity in %, T the air 
temperature in degree Celsius, WD the wind direction in degrees 
from North and WS the wind speed in m s-1. 

B. Validation of the FIFPI model against existing Fire 

Danger Indices 

 
The FIFPI model prediction capability was tested against the 
derived fire danger index variables. This data set included three 
variations of the Lowveld Fire Danger Index (LFDI) currently 
being used by Eskom, and the McArthur Grassland Fire Danger 
Index (MK 4) from Australia. A LR model was used to validate 
the FIFPI model against the LFDI and MK 4 models by 
calculating the variable importance as well as a confusion 

Variable 

Cross 

Val 

Cost 

Misclass 

(%)  

(Learnin

g data) 

ROC 

Misclass 

(%)  

(Validation 

data) 

T,RH,WS,

WD 
0.07 1.01 0.98 3.87 

WS, 

RH,WD 
0.10 2.50 0.98 5.70 

WS, RH, 

T 
0.07 1.01 0.98 4.45 

WS, RH 0.13 3.50 0.98 7.50 

T = Temperature, RH = Relative humidity, WS = Wind 

speed, WD = Wind direction 



matrix. These tests indicated the significance and contribution of 
each of the models to the prediction of a “True” flashover. 

Table 2 illustrates the relative importance of the different models 
to predicting a fire-induced flashover. The FIFPI achieved a 
100% relative importance, followed by the Australian MK 4 
model with 85% importance. The LFDI 2 and LFDI 3 models 
scored lower importance values of 56% and 54%, while the 
LFDI 1 model scored a very low 12%.  

 

Table 2:  Relative Importance between FIFPI and Fire Danger 

Indices 

Prediction models Relative importance (%) 

FIFPI 100 

MK 4 85 

FDI 3 56 

FDI 2 54 

FDI 1 12 

 
A multiple regression analysis was performed to determine the 

correlation between the different models as well as the 

relationship with the flashover (target) data. Correlation is a 

measure of the association between two variables (FIFPI and 

FDI’s), indicating if the value of one variable changes reliably 

in response to changes in the value of the other variable. The 

correlation coefficient can range from 0 to 1.0, where 0 

indicates a low correlation and 1 a very strong correlation.  

The FIFPI model as illustrated in Table 3, scored a 0.98 

correlation with the “True” flashover target data, followed by a 

0.80 correlation between the WK 4 model and “True” flashover 

data. The LFDI 2 and LFDI 3 models had a 0.64 correlation 

with the “True” flashover data, while the LFDI 1 only achieved 

a 0.38 correlation. The WK 4 model also correlated well with 

the FIFPI with 0.84. 

Table 3:  Correlation Matrix 

 FIFPI FDI 1 FDI 2 FDI 3 WK 4 

FIFPI 1.0 0.40 0.67 0.67 0.84 

FDI 1 0.40 1.0 0.85 0.84 0.39 

FDI 2 0.67 0.85 1.0 0.99 0.78 

FDI 3 0.67 0.84 0.99 1.0 0.77 

WK 4 0.84 0.40 0.78 0.77 1.0 

Flashovers 0.98 0.38 0.64 0.64 0.80 

 

IV. CONCLUSION 

 
This study has shown that modeled weather forecast data and 
satellite based fire products can be used to provide predictions of 
fire-induced flashovers underneath Eskom transmission lines. 
The FIFPI was able to correctly predict 98.9% of the flashovers 
in the validation data set using the LR model. During the 
assessment each of the variables contributed uniquely to the 
predictive capabilities of the model as was evident in the rise of 
the misclassification cost with the removal of any of the four 
variables.  

Wind direction and wind speed was found to be the most 
important variables causing sharp increases in flashover 

probabilities, as soon as north westerly winds with wind speeds 
above 4 m s-1 were reached. While wind direction was previously 
seen as only an indicator of other meteorological factors, the 
study has shown it to also be a unique predictor of fire related 
flashovers. By including wind direction in the predictive model, 
the misclassification cost of the flashover prediction model 
decreased from 4.45% (wind speed, relative humidity and 
temperature) to 3.87% (wind direction, wind speed, relative 
humidity and temperature). 

The validation study comparing the flashover prediction 
capabilities of the FIFPI with a number of existing fire danger 
indices demonstrated the effectiveness and the model to provide 
improved prediction of dangerous fire weather conditions. The 
three Lowveld models (LFDI) were unable to provide consistent 
accurate predictions. The MK 4 model provided the second best 
prediction capability which could be attributed to the fact that 
the model is also a LOG function similar to the FIFPI. Linear 
models such as the Lowveld FDI’s seem to have limited 
capabilities for flashover prediction as demonstrated in this study 
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