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Abstract – Airborne lidar technology can play a significant 

role in revolutionising wood resource inventories in 

Australian softwood plantations. Plantation managers are 

interested in the technology but unsure of how to implement 

it. Hence there is a need to demonstrate and compare 

various lidar analysis techniques to provide guidance for 

future operational inventory programs. This paper presents 

findings from a trial airborne lidar inventory undertaken in 

a 5,000 ha Pinus radiata plantation in the Southern 

Tablelands of New South Wales (NSW), Australia. The 

study demonstrates that both area-based and object-based 

approaches for extracting key plot level attributes (i.e. 

maximum height, mean height, stocking density and total 

stand volume) can achieve predictive models with R-squared 

values ranging from 0.81 to 0.97. 
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1. INTRODUCTION 

 

Systematic assessment of plantations is essential for predicting 

current and future stand volumes and implementing silvicultural 

regimes aimed at maximizing returns. This has traditionally 

been driven by plot-based inventory and GPS (global 

positioning system) measurements and supported by Aerial 

Photogrammetric Interpretation (API). Numerous studies have 

utilised airborne laser scanning (ALS) instruments (a type of 

light detection and ranging (lidar) system) for a range of 

inventory parameters (e.g. Brandtberg et al. 2003 and Maltamo 

et al. 2009). Airborne lidar now offers a viable alternative to 

traditional methods and has the potential to revolutionise 

resource inventory procedures. Today various countries (e.g. 

Nordic and North American) are incorporating lidar data into 

their forest management inventories (Hyyppä et al. 2008). 

 

With a total estate of more than 220,000 ha, Forests New South 

Wales (FNSW) is the largest softwood plantation owner in 

Australia. FNSW have been investigating the use of airborne 

lidar for various forestry applications since 2001 and is now 

entering an operational phase with larger trials underway in 

some forestry regions. 

 

This study focused on several area-based and object-based 

approaches to an airborne lidar program in a softwood plantation 

to demonstrate different techniques for deriving wood resource 

estimates. Particular attention was paid to stand level attributes 

that are common to many inventory systems (i.e. maximum 

height, mean height, stocking density and total stand volume). 

 

1.1 Area-based versus object-based extraction of lidar data 

 

There are two broad sampling approaches to forest resource 

assessment using airborne small-footprint, discrete return lidar. 

The first is area-based analysis (ABA) which is also known as 

plot-based, regression-based or distribution-based analysis. 

ABA entails the use of artificial plot boundaries (circular or grid 

polygons) as sampling templates to extract lidar data directly 

from the original point cloud data (vector points) or from 

derived Canopy Height Models (rasters) (Yu et al. 2010). This 

offers a very efficient means of analysing point or pixel data to 

extract descriptive statistics (e.g. maximum, standard deviation, 

etc) within a nominated spatial unit.  

 

The second approach is object-based image analysis (OBIA) in 

which a lidar height image is initially segmented to delineate 

‘objects’ that become the carriers of image information and form 

the basic units of subsequent analysis. In addition to standard 

descriptive statistics, object polygons can also provide useful 

metrics such as size (area), shape and spacing. Moreover, 

because OBIA follows natural boundaries (e.g. crown edges, 

canopy gaps, road corridors) the sampling units are easier to 

visually interpret and to relate to ground survey measurements.  

 

OBIA can utilise the hierarchical and multi-scale spatial 

relationships that inherently exist within plantations. When 

implemented at an individual tree scale OBIA is sometimes 

referred to as an individual tree crown (ITC) approach (Gougeon 

& Leckie 2006), and usually involves the initial detection or 

delineation of individual crowns and then extraction of key 

variables such as tree height and spacing (stocking). Individual 

tree data can then be converted to volume estimates and 

summed at the plot, stand level or compartment level.  Crown 

delineation can be achieved either from the original lidar point 

clouds or from a derived Canopy Height Model (CHM) raster, 

and there are numerous methods available (e.g. Brandtberg et al. 

2003 and Lee et al. 2010). However, for this study, only two 

methods were evaluated; local maxima and crown template 

based on surface morphology. 

 

The first OBIA method, a local maxima procedure, is 

technically a crown-detection (tree location) rather than crown 

delineation approach since it only involves finding crown apices 

or peaks. Peaks are objectively defined as the highest pixel (or 

point) within a localised search window called a ‘local maxima 

filter’. The detection of local maxima is computationally simple, 

and hence much faster than more complex crown segmentation 

algorithms. 

 

The second OBIA technique is based on a crown template 

process utilising the lidar CHM surface morphology in the 

vertical plane. The Spatially and Morphologically Isolated Crest 

(SMIC) process essentially defines elevated convex crests using 

a series of directional filters and algorithms to segment a lidar 

CHM into small objects called SMIC units (Turner 2006). SMIC 

units then constitute the basic sampling, analysis and reporting 

units for wall-to-wall forest inventory.  
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Both of these approaches can be effective in locating tree 

crowns provided that the search filter size and prior image 

smoothing parameters are appropriate for a particular tree size, 

spacing and image resolution (Wulder et al. 2000 and Lee et al. 

2010). A major challenge in this study was the development of 

variable filter size lookup tables to suit the wide range of 

conditions within the plantation study area 

 

2. STUDY AREA 

 

The study formed part of a much larger two year remote sensing 

project called the Plantation Airborne Resource Inventory 

Appraisal (PARIA) sponsored by the Forest & Wood Products 

Australia (FWPA) (www.fwpa.com.au) and FNSW 

(www.dpi.nsw.gov.au/forests). This project investigated the use 

of airborne lidar and digital multispectral aerial photography for 

a range of plantation applications (Stone et al 2010) and 

produced a useful guide for softwood plantation managers 

(Turner and Stone 2010).   

 

A 5,000 ha study area was selected within Green Hills State 

Forest (SF), located near the town of Batlow in the Southern 

Tablelands of NSW, Australia (Figure 1). The Pinus Radiata 

plantation is managed by the Hume Forestry Region of FNSW. 

Green Hills SF has undulating hilly topography and a mean 

elevation of 750m. The site was considered representative of the 

broader softwood plantation estate with the full range of age 

classes, silvicultural treatments and terrain steepness categories. 

 

 
 

Figure 1. Location of the study area (white outline rectangle) 

within Green Hills State Forest near Batlow, NSW. 

 

3. METHODOLOGY 

 

3.1 Field data and sampling design 

 

Using existing Geographic Information System (GIS) thematic 

layers the sample population was stratified by three factors (i.e. 

age class, thinning treatment and ground slope categories) into 

16 strata classes (Stone el al 2010). Each class was randomly 

allocated four circular plots for a total of 63 plots (one strata 

class only contained 3 plots due to its small area).  Due to 

known differences in stocking between strata classes, variable 

sized plots (with radii ranging from 7 m – 20 m) were utilised to 

achieve at least 15 trees per plot. 

 

The centre of each plot and location of each tree was very 

accurately surveyed using a laser theodolite (Leica 2 second 

T1100 total station) and a Differential Global Positioning 

System (dGPS). For each plot, every tree was labelled and stem 

diameter and tree height measured. Tree height was measured 

twice using a Vertex hypsometer by two different operators in 

order to examine variation due to assessors.  

 

3.2 Lidar imagery acquisition and processing 

 

Small-footprint, discrete return lidar data was acquired in July 

2008 using a Lite Mapper LMS-Q560 ALS system (Riegl, 

Austria) mounted in a fixed-wing aircraft and supplied through 

Digital Mapping Australia Pty Ltd (Perth, Australia). The near 

infra-red (NIR) lidar system was configured for a pulse rate of 

88,000 pulses per second, mean footprint size of 60 cm, 

maximum scan angle of 15o (off vertical), mean swath width 

500 m and a mean point density of 2 pulses/m2 (based on the 

non-overlap portion of the swath) in parallel scanning lines.  

 

Processed lidar point data was supplied on an external drive in 

LAS file format with each file representing a 1 km x 1 km area 

(tile).  The first and last return for each laser pulse was extracted 

and tagged with their associated return signal intensity (echo 

strength) values.  A Digital Terrain Model (DTM) at both 1.0 m 

and 0.5 m pixel resolution was constructed from ground point 

data using a standard linear triangulation surface modelling 

technique in Environment for Visualizing Images (ENVI) 

software (Research Systems Incorporated, USA). A Vegetation 

Elevation Model (VEM) was generated from all laser points and 

the DTM was then subtracted from the VEM to derive a Canopy 

Height Model (CHM). 

 

3.3 Area-based extraction with plot polygons 

 

Lidar metrics were extracted for each of the 63 reference plots 

using ground and non-ground point data (binary LAS format). 

Point elevation values were converted to height values by 

subtracting the ground elevation values derived from the DTM.  

 

A number of lidar height metrics from the literature (e.g. Chen 

et al. 2007 and Maltamo et al. 2009) were extracted. These 

included mean, median, mode, maximum, minimum, quadratic 

mean, variance, standard deviation, coefficient of variation, 

range, height of the 5th and 95th percentiles, skewness, kurtosis, 

ground point ratio (ground point count divided by the total 

count) and rumple index (non-ground point surface area divided 

by total area (Kane et al. 2010)). These statistics were generated 

for a series of lidar point data subsets including all points, first 

points only, points above 2m height and variable plot sizes (7 to 

30m radius).  All data extraction and analyses were conducted 

using open source software packages: R-statistical package 

v.2.11.1 (R-Development Core Team 2007) and the GIS 

package GRASS (GRASS Development Team 2010) interfaced 

using the spgrass6 package. All lidar point metrics were 

modelled as independent variables to empirically estimate 

dependent plot-level attributes using a three modelling 

approaches – regression trees, random forest and Bayesian 

Model Averaging (BMA) (De'ath and Fabricius. 2000, and 

Breiman, 2001).  
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3.4 Object-based extraction with local maxima  

 

The process of extracting the maxima pixels was coded in 

Interactive Data Language (IDL) script. A series of local 

maxima search filters (3x3, 5x5, 7x7, 9x9, 11x11, 13x13 and 

15x15 pixels) were applied to the CHM raster. This created a 

series of binary rasters with maxima pixels having a value of 1 

and all other pixels having a value of 0. Using standard ENVI 

routines, the maxima binary layer was then converted to a 

Region of Interest (ROI) and subsequently used to export both 

the original CHM height value and the maxima count value to a 

text files, along with a unique ID number for each maxima, and 

x and y coordinates. The maxima text files were then imported 

into the open-source R-statistical package v.2.11.1 (R-

Development Core Team 2007) for statistical analysis.   

 

Local maxima results are known to be sensitive to search 

window size relative to crown size and hence require careful 

selection of the filter dimensions (Wulder et al. 2000). The 

optimal dimensions of this moving window are dependent on the 

shape, size and density of tree crowns. Our approach was to 

identify the optimum set of window sizes for six combinations 

of age class categories and thinning status (i.e. (AC 10-20, UT); 

(AC 10-20, T1); (AC 20-30, UT); (AC 20-30, T1); (AC 20-30, 

T2) and (AC 30+, T2)). Consequently, based on the statistical 

analysis of the 63 research plots, a new lookup table was 

developed and tested. 

 

3.5 Object-based extraction with canopy segmentation 

 

Given the initial lidar point sampling density of 2 pulses per m2 

many of the larger pine crowns in the CHM possessed numerous 

within-crown gaps which were known to affect the performance 

of the SMIC canopy segmentation process. To minimise this 

problem the CHM surface was initially optimised. An algorithm, 

based on the Crown Infill, Trim and Smooth (CITS) process 

developed by Turner (2006), was used to fill in crown holes and 

smooth the crown surface to enhance the CHM surface prior to 

canopy segmentation.  

 

A series of SMIC filter sizes were tested ranging from 3x3 to 

15x15 pixels and applied to three different treatments. Firstly, it 

was applied directly to the original CHM as a control (method 

1), then secondly to a CITS processed CHM to see if the 

smoothing process improved results (method 2) and thirdly it 

was applied to the CITS smoothed CHM with post-processing of 

SMIC units to remove any noise from the dataset (method 3). 

Lastly, the application of seven different filter sizes for the three 

different methods was also repeated for CHMs with 0.5m and 

1m pixel resolutions to determine if pixel size was a factor in 

performance. Consequently this generated 42 SMIC polygon 

datasets for analysis. 

 

As a control dataset, manually drawn crowns were prepared for 

almost 900 tree crowns in the 63 research plots. When 

comparing automated crowns to manual crowns, SMIC crowns 

were labelled as matches, aggregates, splits or omissions. To 

assist in the semi-automated selection of the most appropriate 

SMIC method for each age class and thinning combination an 

optimisation rule was developed in R software (Stone et al 

2010). The most appropriate filter size and treatment for each 

stratum was incorporated into a look-up table which was re-

applied to the plot dataset to predict inventory parameters. 

 

4. RESULTS AND DISCUSSION 

 

4.1 Area-based approach - plot polygons 

 

To reduce the large number of predictor variables a Spearman’s 

correlation matrix was used to remove the potential for multi-co 

linearity in the models.  For those variables found to have a 

correlation greater than 0.7, one variable was retained and all 

highly correlated variables removed.  The remaining set of non-

correlated variables were minimum height (hMin), rumple index 

- based on the 0.5 m grid cell corrected by the mean height 

(rumple), mean ground slope (slope), height of the 5th and 95th 

percentiles (h5 and h95), skewness (skew), and ground point 

ratio (GPR). Model fit was high for all variables tested (r2 0.58 

to 0.95), however regression trees had the best model fit 

compared to the other statistical approaches. R-squared values 

for the best regression tree models were maximum height 0.95, 

mean height 0.94, stocking 0.85 and total stand volume 0.81. 

The most influential lidar point variable was the 95th percentile 

height (h95) metric. Variables of much lesser influence included 

minimum height, GPR, skewness, h5 and slope.  

 

4.2 Object-based approach – local maxima 

 

For the local maxima analysis, the proportions of matches, splits 

and omissions were plotted against the various search window 

sizes (3x3 to 15x15 pixels) for each age class and thinning 

combination. In general, splits and omission errors tended to 

counter balance each other (e.g. when split errors decrease 

omission errors increase).   

 

Results indicated that not only age class (surrogate for crown 

size) but also thinning treatment (surrogate for stocking density) 

appear to influence the selection of optimal local maxima search 

window size. Table A summarizes the results of the error 

analysis and presents the look-up table used for selecting the 

optimum window sizes for each age class and thinning 

combination for a CHM with a 0.5 m pixel resolution. Note that 

this analysis is based on individual tree data not plot totals. 

 

Table A. The best maxima filters and percentage 1:1 matches. 

 

Thinning Treatment Age 

class UT T1 T2 

10 -20 
*5x5 & 7x7 

(72%) 

7x7    

(72%) 
- 

20 – 30 
7x7 

(65%) 

9x9    

(67%) 

*9x9 & 11x11 

(77%) 

30+ - - 
*9x9 & 11x11 

(77%) 

 * Average of two filter sizes 

 

Based on the regression analysis predicting plot level dependent 

inventory variables, the associated R-square values were 

maximum height 0.97, mean height 0.95, stocking 0.88 and total 

stand volume 0.81. It is likely that estimates improved at the plot 

level because the sum of split and omitted crowns tend to 

balance each other out.  

 

4.3 Object-based approach – canopy segmentation 

 

The proportions of SMIC crown matches, omissions, splits and 

aggregations were calculated for each window size ranging from 

3x3 to 15x15, the three treatments (methods 1,2 & 3) and also 

for pixel sizes of 1 m and 0.5 m. An optimisation algorithm was 

used to select the most suitable window size for each stratum. 

Results showed that the 0.5m CHM was superior to the 1m 

CHM; consequently it was decided to use only the 0.5 m pixel 

size lidar data for further analysis. 



 

Table B summarizes the results of the error analysis and 

presents the look-up table used for selecting the optimum 

window sizes/method for each age class and thinning 

combination using CHMs with 0.5 m and 1 m pixels. This 

analysis is based on individual tree data not plot totals. 

 

Table B.  The best SMIC models and percentage 1:1 matches. 

 

Thinning Treatment Age 

class UT T1 T2 

10 -20 
Method3* 

(78%) 

Method3* 

(81%) 
- 

20 – 30 
Method1* 

(65%) 

Method3# 

(75%) 

Method3# 

(79%) 

30+ - - 
Method3# 

(85%) 

* Based on 0.5m CHM,  # Based on 1m CHM 

 

Results of plot level regression analysis indicated R-square 

values ranging from maximum height 0.97, mean height 0.94, 

stocking 0.90 to total stand volume 0.83. Method 3 proved to be 

the best performing SMIC model (i.e. CITS smoothed CHM 

with SMIC rounding) with the exception of unthinned older 

stands (20-30ys) where method 1 (original CHM) performed 

best primarily due to their more closed canopy structure. 

 

5. CONCLUSION 

 

This study has demonstrated the feasibility of obtaining wood 

resource estimates in an Australian softwood plantation using 

both area-based and object-based extraction approaches for 

small-footprint airborne lidar. Results have shown that all three 

alternative approaches can provide accurate plot level estimates 

of maximum height (r2 0.95 to 0.97), mean height (r2 0.94 to 

0.95), stocking density (r2 0.85 to 0.90) and total stand volume 

(r2 0.81 to 0.83). At an individual tree level, both OBIA 

approaches (local maxima and SMIC) were able to identify most 

dominant trees (i.e. 65 to 85% depending on the age class and 

thinning class).  

 

Forest managers are faced with ever increasing costs of field 

surveys and the growing demand for more rapid, accurate and 

cost-effective spatial information. It is hoped that this study will 

encourage plantation managers to adopt new airborne lidar 

technology into their own planning systems.  
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