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Abstract - Remote sensing of vegetation condition using 

high resolution digital multispectral imagery (DMSI) is an 

option for land managers interested in quantifying the 

distribution and extent of dieback in native forest. Crown 

condition is assessed as reference to the physical structure 

and foliage (i.e. density, transparency, extent and in-crown 

distribution) of a tree crown. At 20 sites in the Yalgorup 

National Park, Western Australia, a total of 80 (Eucalyptus 

gomphecephala) crowns are assessed both in-situ and using 

2 acquisitions (2008 and 2010) of airborne DMSI. Each tree 

was assessed using four crown-condition indices: Crown 

Density, Foliage transparency, and the Crown Dieback 

Ratio and Epicormic Index. DMSI data is trained against 

canopy condition assessment data from 2008, crown 

condition is predicted using only spectral data. Comparison 

of DMSI derived Normalized Diơerence Vegetation Index 

(NDVI), Soil Adjusted Vegetation Index (SAVI) and a novel 

Red Edge Extrema Index (REEI) suggests the REEI is more 

suited to classification applications of this type.  
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1. INTRODUCTION 

 

Eucalypt decline in Australia has increased over recent decades 

(Close et al., 2009; Horton et al., 2011). The visible decline 

symptom is defoliation, manifesting as a reduction in the overall 

density and distribution of foliage. In southwestern Australia, 

Eucalyptus gomphocephala (tuart) dominates the coastal dune 

systems of the Swan coastal plain (Boland et al., 2006). Since 

the early 1990’s there has been concern for the spread of decline 

of tuart throughout parts of this region (see Figure 1) (Archibald 

et al., 2010; Close et al., 2009; Edwards, 2002; Horton et al., 

2011).  

 

Vegetation indices (VI) are used in remote sensing to relate 

biophysical attributes, such as vigor, photosynthetic activity and 

crown density to digital values of individual pixels. This is 

achieved by targeting specific regions in the spectrum and using 

multiband vegetation indices. The region in the spectrum 

between 690 nm and 740 nm is known as the ‘red edge’ (Curran 

et al., 1990) and is useful for characterizing chlorophyll content, 

(Pinar and Curran, 1996; Jago et al., 1999) density of 

chlorophyll in plant cells and crown density (Barry et al., 2008; 

Coops and Catling, 1997; Coops et al., 2002, 2003, 2004; Datt, 

1998; Stone et al., 2001, 2003; Pietrzykowski et al., 2006). 

Chlorophyll absorption in RED (i.e. the region from 600 nm to 

700 nm) and NIR scattering (i.e. the region from 700 

nmto800nm) results in a steep gradient, this is the ‘red edge’. 

Dry eucalypt leaves scatter less NIR, so the slope of the ‘red 

edge’ is flatter. Studies have exploited the location, gradient and 

position of the red edge slope and related it to vegetation 

condition (Demetriades-Shah et al., 1990; Dawson and Curran, 

1998). 

 

The objectives of this study were to assess the accuracy of a 

number of DMSI derived VI for classifying the condition of 

tuart crowns in order to predict condition over time. DMSI 

Crown condition classifications were validated against ground 

based assessments using data available from 2008. Accordingly, 

the DMSI based classification was applied to multi-year (2008, 

2010) time series to produce a change-over-time condition 

trajectory for individual trees.  

 

 
Figure 1: Map of the Yalgorup region showing the DMSI grid 

over the sites 

 

2. METHODS 

 

2.1. DMSI imagery and ground validation  

 

The Yalgorup region (Figure 1) lies between 32
ƕ 
38
ƍ
0”S and 32

ƕ 

44
ƍ
0”S and 115

ƕ 
36
ƍ
0”E and 115

ƕ 
40
ƍ
0”E. Between 2005 and 

2007, 20 sites were established to cover a range of vegetation 

cover trend classes from the 15-year (1990-2005) Land 

Monitor
TM 

25 m x 25 m multispectral imagery method described 

in Caccetta et al. (2000).  

 
In July 2008, 80 trees were randomly selected across these sites 

and each crown was delineated using a differential GPS (dGPS) 



with an accuracy of less than 1m. Using semi-quantitive 

assessment techniques, physical crown attributes (i) Crown 

Density (CD) and (ii) Foliage transparency (FT) indices 

(USDAFS, 2002) together with the (iii) Crown Dieback Ratio 

(CDR) and (iv) Epicormic Index (EI) (Kile et al., 1981; 

Wardlaw, 1989) were assessed for each crown.  

DMSI imagery was collected by SpecTerra Services Pty. Ltd. 

(Perth, Western Australia) using an airborne sensor developed 

specifically to map and monitor vegetation status at high spatial, 

spectral and radiometric sensitivities. DMSI was acquired at 0.5 

m resolution in June 2008 and 2010 at similar solar angles 

under clear atmospheric conditions. The scenes were 

orthorectified as a sequence and pixel matched correcting for 

the sun angle of each flight.  

 

The sensor acquires 12-bit digital data simultaneously in four 20 

nm wide spectral channels in the visible and near-infrared 

regions of the electromagnetic spectrum using filters centred at 

BLUE (450 nm), GREEN (550 nm), RED (675 nm) and NIR 

(780 nm). Post flight processing of the data includes precise 

band to band registration and spectro-radiometric correction for 

bi-directional reflectance distribution function (BRDF) 

variations (SpecTerra Services Pty. Ltd). A ‘like-value’ 

calibration of the 2008 and 2010 DMSI data was conducted 

using a variant of the method described in Furby and Campbell 

(2001).  

2.2. Vegetation Indices  

 

The VI generated for this study are listed in Table1 and replace 

NIR band with SpecTerra Services Ltd 780 nm ± 10 nm and any 

red band with 675 ± 10 nm. DMSI bands are significantly 

narrower than the broader bands used on satellite systems. For 

example, a Landsat Normalised Diơerence Vegetation Index 

(NDVI), which has been derived from various platforms, often 

uses broad bands > 50 nm (Deering and Rouse, 1975).  

 
Table 1: Vegetation indices 
 

Index Equation Adapted from 

NDVI (780 nm – 675 nm)/( 780 

nm + 675 nm) 
Rouse (1974); 
Deering and 
Rouse (1975); 
Huete et al. 
(2002) 

REEI 780 nm/ 675 nm Sims and 
Gamon (2002); 
Gitelson and 
Merzlyak 
(1996) 

SAVI (1+L)(790 nm – 675 

nm)/(780 nm + 675 nm) +L 

 

Where; L is a canopy 

background factor 

accounting for 780 nm and 

675 nm extinction through 

the canopy and L=0.5 

Huete et al. 
(1994) 

 

Narrow band pass filters, i.e. ±10 nm to ± 20 nm, sharpen the 

contrast between RED and NIR by reducing noise. The novel 

Red Edge Extrema Index (REEI), shown in Table 1, expresses 

the contrast between RED and NIR as a simple ratio of the two 

and follows after broader band versions of the same concept by 

Sims and Gamon (2002); Gitelson and Merzlyak (1996).  

 

The Soil Adjusted Vegetation Index (SAVI) used in this study, 

developed by Huete (1988), ignores the constraint of 

atmospheric correction because the DMSI was collected under 

low atmospheric vapour conditions. SAVI reduces soil 

brightness eơects and eliminates the need to calibrate for 

various soil types (Huete, 1988; Huete et al., 1992, 1994; 

Karnieli et al., 2001). The default soil calibration coeƥcient is 

used in this study because the combination of high resolution 

data and the crown only focus eliminates the mixed pixel issues. 

 

2.3. Condition classification  

Figure 2 provides crown condition quintiles representing 

healthy (H) and declining crown condition classes (D) from 

healthy through to declining. Each quintile represents a 20% 

range indicated in its name i.e. H68 represents a crown of 

approximately 60-80% of its ideal (assumed to be a 100% 

foliated, vigorous specimen). Table 2 maps the classes to the 

ground based assessment parameters.  

 

 

 

iFT = (100 − FT)                   (1)  

iCDR= (100 − CDR)                 (2)  

iEI = (100 − EI)                   (3)  

TCHI = CD+ iFT + iCDR+ iEI       (4) 

 
 

 
Figure 2: Tree condition classification key featuring 5 x 20% 

band groups covering 5 classes of healthy and declining crowns 

and a total mortality class (D). 

 

 

 

 

 

 

 



Table 2: Mapping of NDVI, REEI, SAVI and TCHI to the tree 

condition classification 

 

Class  NDVI  REEI  SAVI  TCHI  

H  86-100  87-100  82-100  81-100  

H68  65-85  72-86  65-81  61-80  

H46  50-64  65-71  50-64  41-60  

D24  21-50  41-64  21-50  21-40  

D02  0-20  0-40  0-20  1-20  

 

This crown condition classification scheme is designed for 

simplicity and adaptability with large margin for error, as 

compared to the prediction of a continuous variable, hence 

buơering both the limitations of the ground based assessments 

and the non-linearity of the VI. Ground based assessments are 

combined into a single continuous variable, the Total Crown 

Health Index (TCHI), shown in Equation 4. TCHI is an average 

of the sums of the inversely related canopy assessment 

parameters. Using the distribution of TCHI as a baseline, each 

VI distribution was empirically mapped into the condition class 

quintile breaks (refer Figure2) resulting in Table 2. 

 

 

3. RESULTS 

3.1. DMSI Vegetation Indices  

Comparison of VI distributions, using Figure 3, shows REEI to 

exhibit the most normalized distribution of the set and a close 

correlation between NDVI and SAVI. REEI is the least skewed 

(Tables 3 and 4) and has the lowest kurtosis. The skewness and 

kurtosis of both NDVI and SAVI are similar despite significant 

diơerence in the upper (UCL) and lower control limit  (LCL) 

means (Tables 3 and 4). Both NDVI and SAVI, as normalized 

indices have some negative values. As is to be expected from a 

simple ratio, REEI has the highest range of all three across both 

years. Analysis of the mean, median and maximum peak of 

NDVI and SAVI (Tables 3 and 4 and Figure 3) show the classic 

saturation of VI near their upper limit. This feature is less in 

REEI, consistent with is more normalized distribution, 

skewness and curtosis. 

 

 
Figure 3: Covariate matrix of NDVI, REEI and SAVI derived 

from 80 mean tuart-in-crown pixel values 

3.2. TCHI and crown classification  

Figure 4 shows the diơerence in distribution of the crown 

classes between the TCHI and DMSI VI derived classifications. 

REEI over predicted the healthy classes with a variance range of 

±2 crowns yet performed well at estimating the declining 

classes ±1. NDVI performed better on the healthy classes ±1 

crowns, consistent with is saturation in the upper limit of its 

distribution, was under on D24 (-2) and over on D02 (+1). 

SAVI performed similar to NDVI in the declining classes yet 

was more varied than NDVI in the healthy classes (refer Figure 

4). NDVI and REEI have a total of 6 point variance from the 

TCHI classification, SAVI 8.  

 

 

 
Figure 4: Diơerence between the TCHI of 80 tuart and DMSI 

derived mean in-crown vegetation indices calculated for 2008  

 

 

 
Table 3: Statistical summary of vegetation indices calculated for 
2008 

Statistic NDVI REEI SAVI 

Minimum -0.079 0.854 -0.117 

Maximum 0.394 2.301 0.589 

1st Qu. 0.197 1.491 0.295 

Mean 0.243 1.680 0.364 

Median 0.261 1.708 0.391 

3rd Qu. 0.308 1.889 0.460 

Variance 0.009 0.092 0.020 

Std Dev. 0.094 0.303 0.140 

SE Mean 0.011 0.034 0.016 

LCL Mean 0.223 1.613 0.331 

UCL Mean 0.264 1.748 0.395 

Skewness -1.227 -0.459 -1.223 

Kurtosis 2.087 0.190 2.075 

  

 



Table 4: Statistical summary of vegetation indices calculated for 
2010  
 

Statistic NDVI REEI SAVI 

Minimum -0.036 0.930 -0.054 

Maximum 0.450 2.635 0.673 

1st Qu . 0.209 1.530 0.313 

Mean 0.274 1.809 0.409 

Median 0.294 1.831 0.439 

3rd Qu. 0.350 2.076 0.523 

Variance 0.012 0.150 0.026 

Std Dev. 0.108 0.387 0.162 

SE Mean 0.012 0.043 0.018 

LCL Mean 0.250 1.723 0.373 

UCL Mean 0.298 1.896 0.445 

Skewness -0.914 -0.220 -0.911 

Kurtosis 0.580 -0.320 0.574 

 

 

3.3. Condition class change  

Figure 5 shows the change in condition class between the two 

scenes, for each of the VI. Each performed surprisingly 

diơerently. REEI shows a net reduction in healthy crowns and 

an increase in declining crowns. This is consistent, albiet less 

intense in NDVI; however, SAVI shows a net growth trend for 

the health classes and extreme mean variance of ±10 in the 

declining classes, confirming decline but suggesting it to be 

more severe than what NDVI and REEI indicate.  

 

Figure 5: Change in crown condition classes from 2008 to 2010 

using DMSI VI  

 

4. DISCUSSION 

There are numerous methodologies for assessing canopy density 

and foliage distribution and much work has already been done 

on validating these for eucalypts (Stone and Haywood, 2006). 

The recent work of Horton et al. (2011) found that CD and EI 

were the best performing indicators of crown condition in a 

review of Stone and Haywood (2006) and other work. Horton et 

al. (2011) also studied tuart in Yalgorup, from another patch of 

forest in the region. This approach of combining all four indices 

into a single, TCHI, attempts to account for structural and 

physiological diơerences in foliage throughout the crown. 

The results suggest that simplifying high resolution DMSI data 

into target size objects (i.e. mean tree crown VI) reduces the 

impact of the salt and pepper and mixed pixel eơects often 

found in lower resolution (> 10 m) sensors (Yu et al., 2006). 

The salt and pepper eơect is specific to high resolution sensors 

(1-10m) and disrupts classification routines attempting to 

compare neighboring pixels with in a target object, for example 

a gap in a crown could result in a densely foliated branch next 

to a soil dominated pixel. The opposite, the mixed pixel eơect 

results in a mixture of photosynthetic active and non-

photosynthetic material and inevitably understorey or ground 

cover where the larger pixel covers more than the target and 

combines gaps (Somers et al., 2010).  

This combination of the object based classification and targeting 

RED and NIR bands results in strong classification performance 

despite saturation evident in both NDVI and SAVI. 

Furthermore, it is surprising that SAVI soil reduction parameter 

did not reduce the saturation eơect. Whilst NDVI appeared 

more robust at predicting high green biomass crowns (i.e. H 

class) its overall performance, like SAVI, was less at crowns 

with decline when compared to REEI. Accordingly, the per-

formance of the less saturated and more normally distributed 

REEI suggests it is more suited to this classification approach.  

Given REEI’s performance in this study, its larger and more 

normally distributed range, REEI lends itself to the application 

scene-scene image based visual change detection. That is, pixel 

rendering the diơerence between the REEI of two scenes to 

derive a diơerence image. Broadly speaking, large losses in 

REEI will indicate a reduction of green biomass whereas gains 

illustrate growth. Combined with this simple condition 

classification approach it is possible to map these gains and 

losses to condition with the aid of a species distribution map.  

 

5. CONCLUSIONS 

It is concluded that all three VI performed well and REEI 

appeared the best all round VI for condition classification using 

only DMSI. REEI featured the largest range of all three indices 

and this provided greater flexibility for quantile classification 

against health classes.  

The VI and ground based assessment techniques presented 

provide land managers a means of assessing changes to 

individual crowns over time, making annual to seasonal change 

detection of tree decline possible at the individual tree scale. As 



such it provides a framework for an ongoing monitoring that 

combines operationally proven, ground based assessments and 

DMSI.  
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