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Abstract – Spectral vegetation indices (VI) using two spectral 

bands (two-band VI) have been widely used to monitor 

vegetation status for the last four decades. In those VIs, 

systematic biases have been observed due to differences in 

spatial resolution, known as scaling effect. To understand its 

mechanism and then predict error bounds caused by the 

scaling effect, monotonic behavior of spatially averaged VI 

along with resolution changes has been discussed by several 

researchers. This study introduces theoretical framework 

regarding resolution transfer sequence in which area-

averaged two-band VI surely varies monotonically. The 

definition of such a resolution sequence, called resolution 

class, is explained thoroughly. A set of numerical experiments 

have been conducted to validate the monotonic behavior of 

VIs. From the result the validity of the proposing framework 

has been confirmed. 

Keywords: scaling effect, resolution class, two-band vegetation 

indices, linear mixture model, monotonic behavior 

1. INTRODUCTION 

Global Earth Observation System of Systems (GEOSS) is 

operated by GEO works for long-termed and consistent 

monitoring of earth surface environment, and provides an 

important scientific basis and decision making in every sector of 

our society including climate, energy, agriculture, biodiversity 

and numerous other areas (Lautenbacher, 2005). In the system, 

multiple data sources of earth observation based on satellite or 

airplane remote sensing as well as ground measurements have 

been integrated to achieve its goal. In this context, Land surface 

imaging (LSI) constellation system plays an important role for 

land surface monitoring in which four decades of satellite images 

from various optical sensors of middle resolution (10~100m) are 

archived (Bailey, 2007). To facilitate environmental monitoring 

with high accuracy, integration of the data of different sensors 

from calibration point of view is considered as indispensable 

efforts/tasks (Tucker, 2005). 

However, in general, data from multiple sensors tend to be 

suffered from biases due to differences in sensor characteristics 

such as spatial and spectral resolution (Brown, 2006). Hence, the  

Figure 1. Transition of NDVI as a function of spatial resolution. 

(a) False color image on target field observed by Landsat7/ETM+ 

for sub-urban area. (b) Area-averaged NDVI as a function of 

spatial resolution (number of pixel).  

 

problems caused by the sensor differences need to be overcome.  

Spatially averaged values of spectral vegetation indices (VIs) 

using red and near infrared (NIR) bands, e.g. NDVI, SAVI and 

EVI2, shows some degree of dependencies on spatial resolution 

(Obata, 2011). The systematic errors in two-band VI induced by 

differences in spatial resolution are known as scaling effect 

(Aman, 1992; Cola, 1997, Maselli, 1998, Jiang, 2006). Especially 

the scaling effect of NDVI has been investigated intensively from 

empirical viewpoints (Thenkabail, 2004), numerical simulations 

(Huete, 2005), and analytical approaches (Hu, 1997). One 

example of the scaling effect in area-averaged NDVI is 

introduced in Fig. 1. The false color image on the target field is 

shown in Fig.1 (a). Figure (b) is a plot of the area-averaged NDVI 

as a function of spatial resolution (the number of pixels). Several 

studies have discussed the trend of NDVI (Hu, 1997; Jiang, 2006) 

by mentioning its monotonic behavior under a certain condition 

where the land surface is composed of two components 

(vegetated and non-vegetated surface). Monotonicity turns out to 

be an important aspect from calibration point of view. If we are 

able to identify the factor that determines the monotonic behavior 

and their trend (increasing or decreasing), the bias prediction 

would be easier.  

Yoshioka et al. has introduced a condition under which the 

averaged NDVI changes monotonically along with spatial 

resolution (Yoshioka, 2008). Although their study shows the 

existence of the resolution sequence along which the NDVI value 

changes monotonically, thorough discussion about the framework 

of the theory remains undone. The accompany paper (Obata, 

2011) discussed a proof of monotonic behavior subjecting two- 

band VI in general form by expanding the theory on NDVI  
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Figure 2. Illustration of resolution transfer from level 1 in to 2.   

 

scaling effect. The objective of this study is to discuss a 

framework of the theory, specifically about the condition on the 

resolution sequence.  

 

 

2. BACKGROUND 

To model a series of resolution transition, a simple partitioning 

rule has been proposed (Yoshioka, 2008) as illustrated in Fig. 2. 

The number of pixels within a target area represents spatial 

resolution, expressed as ‘resolution level’ in this study. The 

resolution transfer is modeled by applying the partitioning rule 

(Fig. 2) to one of the pixels. In Fig. 2, the variable α  represents a 

proportional area after the partitioning process. Then one 

resolution level will be transferred to the next level by applying 

this partitioning rule only once. Any resolution case will be 

reached from the original 1x1 case (the coarsest level) by 

repeating this process for a number of times necessary to achieve 

the designated resolution level. Variations of the VI value can 

also be modeled by averaging the VI values over the region. 

Under the two-endmember assumption, magnitude relationship 

of spatially averaged two-band VIs between i -th and ( 1+i )-th 

level (
i
v  and 1+iv ) was investigated analytically (Obata, 2011) as 
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where 
RV ,ρ  and 

NV ,ρ  are red and near infrared (NIR) 

reflectance of vegetation endmember spectrum, and 
RS ,ρ  and  

NS ,ρ  are red and NIR reflectance of non-vegetation endmember 

spectrum in the coordinate system of transformed space (Obata,  

 

 

Figure 3. Examples of resolution classes from resolution level 1 

to 4.  

 

 
 

Figure 4. Illustration about monotonicity of spatially averaged 

two-band VI within a resolution class. 

 

2011). The coefficient k  depends on a choice of two-band VI. 

For example, in the case of NDVI and SAVI, k  becomes 1, 

while k  is 2.4 for EVI2. If 
k

η  is smaller than 1, 1+iv  is equal or 

larger than 
i
v . On contrary, if 

k
η  is larger than 1, 1+iv  is equal 

or smaller than 
i
v .  Finally, the scaling effect never arises when 

k
η  is equal to 1.  

 

 

3. RESOLUTION CLASS 

In order to proceed our discussion, we will define a sequence of 

resolution cases, ‘resolution class,’ in this section. A resolution 

transfer sequence generated by the repetition of the partitioning 

rule is defined as ‘resolution class.’ Two examples of resolution 

class with one-dimensional array are illustrated in Fig. 3. Note 

that although we use one-dimensional case as an example, this 

concept can be easily extended to the ordinal two-dimensional 

case (imageries). 

Monotonic behavior of VI in a resolution class (along with 

spatial resolution) can be proved by the following analogy. From 

Eq. (1) area-averaged two-band VI after a single partitioning 

process ( 2v ) will be smaller than the value before the partitioning 

( 1v ) when 
k

η  is larger than 1 as illustrated in Fig. 4. Under this 

condition, averaged value of two-band VI within a resolution 



class decreases monotonically from coarser to finer resolution 

(Fig. 4). Back to the explanation of Fig. 3, each sequence in Fig. 

3 results in monotonic behavior based on the above analogy. On 

contrary, since these two sequences belong to different resolution 

classes, mixture of these two sequences may not show monotonic 

behavior. (Although it may happen to be monotonic, 

monotonicity is not guaranteed.) 

 

 

4. NUMERICAL SIMULATION 

 

The monotonic behavior of spatially averaged two-band VI 

within a resolution class will be validated by numerical 

simulations. We assumed one-dimensional array with the same 

size of nine pixels as a target field illustrated in Figs. 5(a) and 

6(a). The sample consists of only two types of surfaces 

(vegetation and non-vegetation). To vary the trend (increasing or 

decreasing), two sets of endmember spectra have been assumed; 

one (EM1) results in 1>
k

η  by setting spectra of (0.05, 0.35) and 

(0.1, 0.1) in red-NIR reflectance subspace for vegetation and non-

vegetation, respectively. The other (EM2) results in 1<
k

η  by 

setting (0.05, 0.35) and (0.3, 0.3) for vegetation and non-

vegetation, respectively.  

Reflectance spectra of nine levels of spatial resolution (level 1 

to 9) were prepared to simulate reflectance spectra at various 

resolutions by averaging endmember spectra for each field. A 

reflectance spectrum at resolution level 1 is an area-averaged 

spectrum over the entire target field, and spectral data set of i -th 

resolution level is generated by setting 1−i  boundaries and by 

performing spatial averaging for each pixel determined by the 

boundaries. The partitioning process is applied eight times to 

yield 9-th resolution level. As a result, there are 8! = 40320 ways 

to generate the resolution transfer sequences, meaning that 40320 

resolution classes were simulated in the simulation. Based on our 

theory, we expect that the area-averaged two-band VI varies 

monotonically for all the 40320 classes.  

 

 

5. RESULTS 

Figure 5 shows the variations of area-averaged NDVI, SAVI, and 

EVI2 as a function of spatial resolution for the case of EM1 in 

which the value of 
k

η  is greater than 1. Figures 5 (b-d) show the 

VI variations for all the 40320 classes. We confirmed that all the 

cases show the decreasing trend as predicted from the theory, 

which indicates validity of our theory. Differences among VI can 

be seen as differences in magnitude of the error bounds.  

Figure 6 shows the same plots as Fig. 5 for different 

endmember spectra (EM2). In this case, we expect increasing 

trend based on the theory, which can be confirmed in Figs. 6 (a-d).  

 
 

Figure 5. Monotonic behavior of spatially averaged two-band VI 

along with the number of pixels for EM1. (a) The target field 

consists of vegetation and dark soil. (b-d) show area-averaged 

two-band VI as a function of spatial resolution for 40320 

resolution classes. 

 

 
 

Figure 6. Monotonic behavior of spatially averaged two-band VI 

along with the number of pixels for EM2. (a) The target field 

consists of vegetation and bright soil. (b-d) show area-averaged 

two-band VI as a function of spatial resolution for 40320 

resolution classes. 

 

Figure 7 shows the results of EM1 case with different distribution 

of two endmembers to see the influence of heterogeneity. From 

the results, the trend (decreasing) stays the same as Fig. 5, which 

confirms the fact that the heterogeneity does not affect its trend 

(as was predicted from the theory). Note that the difference from 

Fig. 5 is the fact that the averaged VI values does not approach to 

the asymptotic value at early stage of resolution level. The reason 

is that pixel cannot be homogeneous at early level of resolution 

due to its heterogeneity comparing to Fig. 5. 



 
 

Figure 7. Monotonic behavior of spatially averaged two-band VI 

along with the number of pixels with different heterogeneity from 

Fig. 5.  

 

6. DISCUSSION 

This study introduced a framework for analysis of the scaling 

effect in two-band VIs expressed by a general form of model 

equation. The analysis becomes easier by knowing the fact that 

there are certain sequence of resolutions along which spatially 

averaged VI shows monotonic behavior. The resolution sequence 

was defined as ‘resolution class’, which is generated by applying 

simple partitioning processes repeatedly. We also introduced a 

key parameter to identify its trend (either increasing or 

decreasing) which can be written as a function of endmember 

spectra.  

Numerical simulations have been conducted to examine 

validity of our theory. It was successfully demonstrated that the 

trend predicted from the theoretical analysis indeed explains the 

results obtained from the experiments.  

Knowing the fact that averaged VI value changes 

monotonically under a certain condition, we take a step forward 

in predicting error bounds of VI value caused by resolution 

differences. It would also contribute to inter-sensor calibration on 

spatial resolution for various data products including fraction of 

vegetation cover and LAI.  
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