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Abstract - The accuracy of forest classification is generally 

improved by multisensor data fusion since tree species 

identification benefits from complementary information. 

However, hypothesizing multisource fusion can also 

deteriorate accuracy when a non-relevant source is added, 

we propose a fusion method for classes in difficulty. When 

the difficulty threshold we introduce is appropriated, our 

method outperforms the classical approach consisting in 

performing fusion for all classes. Moreover, the fusion 

processing time can widely decrease when several classes are 

put aside. This method can be used effectively to enhance 

accuracy and processing speed when analyzing the wealth of 

information available from remote sensors. 
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1. INTRODUCTION 

Today, an increasing number of sensors of greater diversity is 

available to the remote sensing community. Such a variety of 

spectral, spatial and temporal resolutions has very useful 

complementary properties and can therefore outperform 

conventional single-source approaches (Benediktsson and 

Kanellopoulos, 1999; Chust et al., 2004; Blaes et al., 2005; 

Waske and Benediktsson, 2007). In this way, multisource 

classification represents a fruitful use of the diversity of 

remotely sensed data. Finding an optimal method for fusing 

multisource data is still a very challenging research topic, but 

only few approaches have been developed (see Hill et al., 2005; 

Tuia et al., 2010). One of the most classical studies in this field 

is probably Waske and Benediktsson (2007). They compare 

several algorithms, namely maximum likelihood, decision trees, 

boosted decision trees and support vector machines (SVM) for 

optical and synthetic aperture radar (SAR) data fusion. They 

point out that SVM outperforms the other four algorithms and 

denote that SVM fusion is more successful when applied to 

single-source decision functions than when applied directly to 

all sources together. The present paper claims to be in 

continuity with the latter work since the SVM-based fusion 

schemes they use is compared with the one we introduce. The 

aim of this study is thus to find an optimal fusion scheme based 

on SVM for multisource classification of vegetation. 

 

2. MATERIALS AND METHODS 

2.1 Study site and ground data collection 

Moorea is the fourth highest island in French Polynesia (South 

Pacific) with a highest point, mont Tohiea reaching 1207 m. It 

is a 134 km² island with a shape vaguely resembling a triangle 

with two nearly symmetrical bays opening to the north side: the 

Cook’s and Opunohu Bays. 

 

This study focuses on tropical forests which is a subject of great 

interest to scientists around the world. United Nations General 

Assembly declares 2011 as the International Year of Forests. 

Indeed, we argue that multisource image fusion is critical to 

classifying complex structures since each complementary source 

can contribute to classification success. Optical, infrared, SAR, 

digital elevation model (DEM) and multi-temporal data can 

therefore be useful for species identification according to their 

physico-chemical, anatomical, structural, ecological (via the 

topography) and phenological properties respectively. 

Conversely, one source is often satisfactory for classifying 

simple structures. 

 

The Domaine territorial de Opunohu (Territorial Domain of 

Opunohu) (Figure 1) is ideal for our study since it is highly 

affected by anthropogenic activities (urbanization, farming, 

pineapple cultivation and tree plantation), biotic invasions and 

cyclones leading to a complex mosaic of dominant native, 

introduced and planted plant species (Table A).  

 

Twelve 260 pixels circular regions of interest are selected and 

geo-localized with a handheld Trimble® GeoXHTM GPS for 

each of the eight dominating species of the study area. The 

analysis is therefore based on 24,960 pixels. Half of this area is 

used for classification training and half for validation. Balance 

data sets are used to avoid under- or over-representation 

problems (Waske et al., 2009). 

 
 

Figure 1. The island of Moorea and its Domaine Territorial 

de Opunohu (in blue) where the study is conducted. 

 

 



 

 

2.2 Remotely sensed data 

The experiment is carried out on three data sets, namely a 

multispectral image, a SAR image and a digital elevation model 

(DEM), projected in the WGS 84 – UTM 6 South coordinate 

system. 

 

For the first image type, we selected a four-bands and 0.60 m-

resolution Quickbird scene from November 9, 2006. It is 

geometrically corrected using the cubic convolution 

approximation technique, more suitable than nearest neighbour 

and bilinear interpolation techniques according to Arif et al. 

(2006). The near infrared band is useful for vegetation studies 

(Boureau, 2008) and very high spatial resolution is critical for 

plant species discrimination (Xie et al., 2008; Turner et al., 

2003) using texture metrics for example. 

 

Eight gray-level co-occurrence matrix (GLCM) texture metrics 

are extracted from this data: mean, variance, homogeneity, 

contrast, dissimilarity, entropy, second moment and correlation 

(Haralick et al., 1973). They are calculated in the 15x15 pixels 

window size, determined as optimal after several tests. Since 

GLCM texture metrics have a strongly different nature than the 

spectral information, they were considered as a separated 

source. 

 

For the second image type, two 2.5 m-resolution StripMap 

TerraSAR-X acquisitions were programmed over Moorea on 

April 30, 2010 in VV-VH polarizations and on August 28, 2010 

in HH-HV polarizations. The scenes are geometrically corrected 

using a 5 m-resolution DEM. 

 

The same eight GLCM texture metrics are again extracted from 

the TerraSAR-X data. They are also considered as a separate 

source. 

 

The third data set is the DEM produced from a 

photogrammetric restitution at a scale of 1/5000 based on aerial 

photography from 1997 at a scale of 1/15000. It is shifted from 

the RGPF – Moorea 87 local coordinate system to the WGS 84 

– UTM 6 South. With a 5 meter resolution it enables extraction 

of topographical variables typically impacting plant distribution 

in montane ecosystems: elevation, slope, aspect and a wetness 

index (Gessler et al., 2000). The wetness index was used as an 

index of water drainage. With low wetness index values 

representing convex positions like mountain crests and with 

high wetness index values representing concave positions like 

coves or hill slope bases. It is a function of the slope angle β (in 

radians) and the specific catchment area (As) expressed as m² 

per unit width orthogonal to the flow direction (1). 
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2.3 Support vector machine method 

SVM is arguably one of the most successful statistical tools for 

multisource fusion (Waske and Benediktsson, 2007; 

Halldorsson et al., 2003; Song et al., 2005; Fauvel et al., 2006). 

SVM consists in projecting vectors into a high dimension 

feature space by means of a kernel function then fitting an 

optimal hyperplane that separates classes using an optimization 

function (2). For a generic pattern x, the corresponding 

estimated label ŷ is given by (2). ∑ +),(sign=)]([sign=
1=
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Wherein N is the number of training points, the label of the ith 

sample is yi, b is a bias parameter, K(xi,x) is the chosen kernel 

function and ai denotes the Lagrangian multipliers. 

 

SVM is introduced by Vapnik (1998) and extensively described 

by Burges (1998), Schölkopf and A. Smola (2002) and Hsu et 

al. (2009). As suggested by the latter and supported by many 

other papers, we use the radial basis function (RBF) as the 

kernel. The equation is (3). 
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Noise in the data can be accounted for by defining a distance 

tolerating the data scattering, thus relaxing the decision 

constraint. This regularization parameter C as well as σ are 

found by cross-validation. 

 

SVM have been created for two-class problem but extensions 

have been developed to deal with Q class problem. Among 

them, we choose the One-Against-One algorithm which consists 

in the construction of Q(Q-1)/2 hyperplanes which separate 

each pair of classes. 

 

2.4 Fusion schemes comparison 

We compare the following two fusion schemes based on SVM 

(Figure 2): 

- Waske and Benediktsson (2007) method: a single SVM 

is trained on each source separately and a rule image is 

generated for each class on each source. Then an 

additional SVM is trained on rule images of each single-

source classification to perform the fusion; 

- fusion for classes in difficulty: The general principle is 

the same but fusion is performed only when no single 

source is able to classify satisfactorily a class or a set of 

classes. A difficulty threshold α is therefore introduced 

to define whether a class is in difficulty or not. 

Assuming for a given class that α>min(PAsource i;UAsource 

i) (wherein i Є [1,5], PA is the producer accuracies and 

UA the user accuracies), the class is not considered as in 

difficulty, the spatial distribution of the considered class 

is taken from the most accurate single-source 

classification (the source having the best OA) and the 

class is expelled from fusion. If a pixel belongs to 

several classes with this process, the class with the best 

Table A. Class set 

 

Dominant species class set Status 

Hibiscus tiliaceus Indigenous 

Inocarpus fagifer Polynesian introduction 

Neonauclea forsteri Indigenous 

Aleurites moluccana Polynesian introduction 

Falcataria moluccana Exogenous and invasive 

Pinus caribaea Exogenous and invasive 

Casuarina equisetifolia Indigenous 

Cloud forest 60% of  the native flora is found in CF 

 



 

 

min(PAsource i;UAsource i) wins. If α<min(PAsource i;UAsource 

i), the class is considered as in difficulty and fusion is 

performed.  

 

3. RESULTS AND DISCUSSION 

3.1 Accuracy assessment 

Comparing the different sources, TerraSAR-X spectral and 

contextual data performed worst in term of accuracy (Table B). 

The reason may be that even if it gives useful information on 

the structure of the vegetation cover, such data is not able to 

discriminate such a fine class set at the species scale. 

Classification from DEM gives an OA of 42.5 and a Kappa of 

34.3 but these average results hide tremendous differences 

between classes. In particular, the PA and UA of the cloud 

forest class are 100 which means that topography is sufficient to 

explain the spatial distribution of this habitat in the Domaine 

Territorial de Opunohu. The Quickbird imagery achieves the 

highest accuracies of single-source classifications. GLCM 

texture metrics appear as highly relevant for tree species 

discrimination. More probably than their color, it is thus the 

layout of crowns, branches and leaves that allow the SVM to 

identify one species from another. 

 

Regarding fusion methods, accuracies are improved when 

multiple sources are used for classification. The experimental 

results clearly show the positive impact of complementary 

multisensor imagery for forest classification. Comparing the 

different fusion methods, fusion for classes in difficulty slightly 

outperform the method in Waske and Benediktsson (2007) 

when the difficulty threshold α is fixed between 87.0 and 96.8 

(Figure 3). At this threshold, fusion is performed for each 

classes except for Aleurites moluccana which has a PA=96.8 

and a UA=97.5 from the texture extracted from the Quickbird 

data only and the cloud forest which has a PA=100.0 and a 

UA=100.0 from the DEM only. For these two classes, we 

pointed out that fusion can deteriorate accuracy when not used 

appropriately. Indeed the addition of non-relevant sources acts 

as a bias in the classification process. Fusion for classes in 

difficulty has as main advantage to select classes which can 

benefit from multiple information sources and thus to be not too 

global. 

 

By performing fusion for classes in difficulty, we only tested 

seven combinations of classes for fusion. In reality, 240 other 

combinations of classes exist and should be tested since we can 

suppose that at least one of them performs better than the 

optimal combination of classes we used, namely all classes 

except Aleurites moluccana trained on texture extracted from 

the Quickbird data only and cloud forest trained on the DEM 

only. Such a test may be computationally demanding but should 

be implemented in the future. 

 

3.2 Fusion processing time assessment 

The fusion processing time and the number of classes 

considered for SVM fusion can be fitted by a quadratic 

regression giving an r²=99.9% (data not shown). As a result, by 

limiting the number of classes in the fusion, processing time can 

be significantly reduced. For example when Q=6 i.e. in the 

optimal combination of classes we tested, fusion processing 

time is half the time when Q=8. 

 

 
Figure 2. Diagram of fusion method in Waske and Benediktsson (2007) compared with the fusion for classes in difficulty we 

introduce. 

 
Table B. Accuracies (%) achieved by SVM using different 

source 
 

Source OA Kappa 

Quickbird 64.8 60.4 

Texture metrics from Quickbird 84.6 82.7 

TerraSAR-X 23.0 12.0 

Texture metrics from TerraSAR-X 42.0 33.9 

DEM 42.5 34.3 

Method in Waske and Benediktsson (2007) 93.9 93.0 

Fusion for classes in difficulty 95.4 94.7 

 



 

 

4 CONCLUSIONS 

In this study, two fusion schemes based on SVM were 

compared for multisource classification of French Polynesian 

tropical forests. Contrary to the classical global approaches, we 

proposed to use fusion for classes in difficulty only. Classes 

accurately classified with a single-source are expelled from 

fusion since we show that fusion can perform worse than single-

source classification for some classes. Our method slightly 

outperformed the classical global approaches in term of 

accuracy and reduced by a factor 2 fusion processing time in 

our study case. 
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Figure 3. Evolution of the overall accuracy and the fusion 

processing time according to the difficulty threshold (α) 

introduced with the “fusion for classes in difficulty” method. 

Regarding its value, classes are considered as in difficulty and 

fusion is performed or not. Here, the optimal value of α is in the 

range 87.0-96.8. 
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