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Abstract: Satellite and aerial remote sensing are always 

subject to atmospheric dispersion. Across Gulf coasts, the 

quality of pattern recognition becomes extremely crucial in 

aspects of anticipation, prevention and prediction on the 

environmental conditions.  Spatial images being captured 

are easily affected or corrupted by band correlation. For 

feature discovery like edge, region and contour detections, 

critical changes in object properties are captured via 

detecting sharp variations in image brightness. Due to band 

correlation, false detection occurs frequently, leading to 

information loss and feature deformity. Since classical 

approaches are lack of accuracy, artificial intelligence is 

introduced to strengthen feature detection. Implementation 

of Ant Colony Optimization (ACO) is proposed to reinforce 

discriminating identification. By simulating the foraging 

behaviors of ants, ACO performs local and global search 

simultaneously. It can effectively handle effects of band 

correlation. Visual perception is enhanced using ACO 

compared with classical approaches. Improvement is also 

observed via quantitative analysis.  
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1. INTRODUCTION 

 

Data management of remote sensing has various applications in 

fields of environment surveillance, weather forecasting, space 

exploration and national security. The typical pattern discovery 

techniques could be edge based, region based or feature based. 

Edge detection is to identity sharp intensity changes and feature 

discontinuities across conditions with different illumination, 

surface orientation, object material and object size as well as 

background. Search-based and zero-crossing based methods are 

two typical edge detection approaches. The search-based 

methods detect edges by computing the 1st order gradient 

magnitude and searching for its local directional optima of the 

gradient magnitude. The zero-crossing based methods search 

for zero crossings in a 2nd-order Laplacian of Gaussian filter 

computed to locate edges. Although the ideal edge detector is 

capable of providing a set of connected curves to represent 

boundaries of objects, markings, and discontinuities in surface 

orientation, it can seldom be implemented. Missing segments 

and false edges are fairly common problems for edge detection 

and feature extraction. Some classical detection approaches 

adopt the specific templates or combine smoothing functions, 

which are so sensitive which can easily produce broken edges 

and information loss [1-7]. Some advanced techniques such as 

Hough transformation and Canny edge detection have been 

used to compensate for the broken edges. Canny edge detection 

uses both bilinear and tri-linear interpolation to convert 

between square and hexagonal structures. The estimated pixel 

edge strength on the square structure is used for Canny edge 

detection, which improves accuracy and efficiency [11]. 

However, it is a tough work and almost impossible to make 

connection accurately. In this case, artificial intelligence has 

been taken into account for pattern recognition issues. Target 

detection in remote sensing can be conducted spatially or 

spectrally. The subpixel spectral detection is considered for 

remote sensing images. Two approaches of nonnegatively 

constrained least square estimation and constrained energy 

minimization are implemented [9]. Mixel decomposition of 

remote sensing images is to improve quality of feature 

extraction. Linear mixel decomposition leads to distortion. 

Particle swarm intelligence (PSO) has been introduced to 

implement mixel decomposition combined with linear mixels 

decomposition model. It presents better robustness to the 

environment [10]. Genetic Algorithms (GAs) based back-

propagation neural network classifier is applied to study the 

impact of the land use and land cover changes on the structure 

of ecosystems. It has the higher accuracy and reliability to 

classify remote sensing data than conventional methods such as 

minimum distance classifier, maximum likelihood classifier 

and neural network classifier [11]. Random field models can 

provide robust and tractable way for coding multisource 

information of remote sensing data. The performance is 

dependent on accuracy of model parameter estimations. Genetic 

Algorithms improve parameter estimation and enhance 

classification accuracy [12]. Ant colony optimization (ACO) 

has also been proposed to solve complex remote-sensing 

classification. It takes into account data correlation between 

attribute variables. Discretization technique is incorporated so 

that classification rules can be induced from large data sets of 

remote sensing images. It yields better accuracy than the 

decision tree method [13]. ACO algorithms are used in 

segmentation of multispectral remote sensing images to 

optimize fuzzy clustering. By hybridization of the foraging 

behavior and K-Means, quality and processing time become 

much better than other techniques. A discretization technique is 

incorporated so as to induce classification rules from the large 

data sets. The approach has higher accuracy and reliability [14]. 

Fuzzy-rule-based systems using the continuous ACO have been 

designed. It uses an online-rule-generation method to determine 

the number of rules and identify suitable initial parameters for 

the rules and then optimizes all the free parameters using the 

continuous ACO. This approach optimizes parameters in 

continuous domains with greater learning accuracy. ACO is 

used to solve combinatorial optimization problems. An ACO 

edge detection technique establishes  a  pheromone  matrix  that  

represents  edge information  at  each  pixel  based  on  routes  

formed  by  ants dispatched on the image, missing edges are 

clearly observed, however. ACO is applicable for optimizing 

regulator circuits with discrete components. An extended ACO 

can search for the optimal continuous values of components 

like inductors to optimize power electronic circuits via the 

orthogonal design method [15-18]. From the qualitative results, 

it is shown that the application of ACO will significantly filter 

out less relevant information and preserve the important 

structural properties of remote sensing data. It could be also 

successful in edge detection and management optimization of 

remote sensing data. In turn, it will simplify subsequent tasks of 

data interpreting and decision making remarkably.  

 

In this article, the enhanced ACO has been proposed for digital 

aerial image identification. Besides the qualitative analysis, the 

quantitative metrics will be employed to evaluate the outcomes 

of enhanced ACO edge detection compared with the traditional 

edge detection technique from an objective point of view. 

 



 
2. AERIAL IMAGE WAVELET PACKET DENOISING  

 

The wavelet theory is introduced for image denoising. A digital 

image could be decomposed into four parts: the approximation 

and three detail components (horizontal, vertical, diagonal). 

Each has a quarter size of that image being decomposed. 

Instead of further decomposing the approximation component 

exclusively using discrete wavelet transform (DWT), wavelet 

packet decomposition is proposed so that the detail components 

are decomposed simultaneously at each level. Via thresholding, 

denoised images can be reconstructed by inverse operation. 

Two-level decomposition has been applied, where both real and 

imaginary parts of the wavelet packet coefficients are filtered 

independently. As the fractal-based denoising in the wavelet 

domain, it causes less information loss and better estimation for 

the denoised images. Since the quantitative measures are also 

proposed to determine the actual quality of edge detection for 

remote sensing data, it is straightforward to use the gray level 

images as candidates for a matter of simplicity. Thus, right after 

wavelet packet denoising, true color (RGB) trimulus images 

will be converted to the gray level images. Similar to each color 

component (Red, Green and Blue), the gray level component 

contains 256 bins and the percentage of counts for each bin 

over its total accumulation value will serve as the probability 

distribution of the digital images. It will represent the bases for 

quantitative analysis. In Figs. 1-4, two typical denoised images 

and resulting gray level images across the Gulf of Mexico 

region are shown.  

 

 
Fig. 1 Denoised True Color Image 1 

 

 
Fig. 2 Denoised True Color Image 2 

 

 

  
  

Figs. 3-4 Gray Level Aerial Images 1-2 

 

3. PRINCIPLE OF ANT COLONY OPTIMIZATION 

 

The ACO algorithm is a probabilistic population-based scheme 

to find best paths through graphs via optimizing the searching 

path so as to estimate the best solution. It is similar to the real 

world problem when ants seek a path randomly between a 

colony and the sources of food. Its application is simplified into 

an optimization problem with searching paths on a weighted 

graph, where the artificial ants try to solve a combinatorial 

optimization problem by moving on the connected construction 

graphs, which is suitable for edge detection. Each artificial ant 

starts from an arbitrarily selected node and tracks solutions 

along edges of the graph before it returns to the colony. The 

pheromone path to actual food sources traversed by ants will 

have a larger chance to be followed by other ants. Whenever 

other ants also find food in the same path, the pheromone 

intensity will be reinforced. The pheromone intensity in fact 

represents the cumulated experience of the ant colony based on 

ants’ memory. On the other hand, the pheromone evaporates to 

avoid convergence to locally optimal solutions. The pheromone 

path starts to evaporate, thus reducing its attractive strength. 

The more time it takes for an ant to travel along a path and back 

again, the more time the pheromones have to evaporate. This 

will result in diversity to avoid local stagnation. The parameters 

in the pheromone model are modified across the time. The 

actual pheromone density is dependent on the tradeoff between 

reinforcing and evaporation processes. The goal is to enhance 

pheromone intensities associated with good solutions and 

decrease those associated with bad solutions. The solution 

exploration will be constrained. Once all ants have completed 

their trips, the pheromone on edges is updated. Positive 

feedback eventually leads all the ants following a single 

shortest path to the source. In an ACO algorithm, the ants will 

mark best solutions and use previous markings for purposes of 

optimization. This procedure is repeated until a termination 

criterion is reached. The ants exchange information indirectly 

by depositing pheromones, giving rise to the self-organized 

stigmergy structure.  

 

The ACO algorithm consists of two stages: edge selection and 

pheromone update. In the edge selection stage, an ant moves 

from node i to node j at a probability Pij. The path visibility is 

designed to be the ratio of the maximum variation of intensity 

and the average intensity. In this case, edge pixels are expected 

to have relatively bigger visibility. The selection rule is defined 

as (1), where 
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τi,j is the pheromone amount on edge between i and j 

ηi,j represents the path visibility of between i and j 

α represents a parameter to adjust the impact of τi,j 

β represents a parameter to adjust the impact of ηi,j 
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The maximum intensity variation function is described as the 

ratio of the maximum intensity variation and average intensity 

to improve the rate of true edge detection (2). 
(i+1,j+1)

[m,n]=(i-1,j-1)

i,j

MAX MIN

2 Max |I(m,n)-I(i,j)|
η =

I I+
   (2) 

where, I denotes the pixel intensity; IMAX and IMIN denote the 

maximal and minimal pixel intensity, respectively. In general, 

the higher the pheromone path visibility (intensity variation) is, 

the higher the probability an ant will choose that particular edge 

at last.  

 

In the pheromone update stage, evaporation of pheromone 

helps to avoid extraordinary accumulation of pheromone 

intensities. For those untouched nodes, the pheromone intensity 

values will decrease exponentially. To prevent from stagnation 

of the searching process, constraint minima of pheromone 

intensity must be set. Each of pheromone intensities is reduced 

by evaporation and then increased by depositing extra amount 

of pheromone based on solutions available. The updating rule is 

defined as (3), where 

τi,j = (1 − ρ)τi,j + ∆τi,j    (3) 

τi,j is the pheromone amount on edge between i and j 

∆τi,j represents the amount of pheromone deposited 

ρ represents the rate of pheromone evaporation (0 < ρ < 1) 

∆τi,j= ηi,j when the ant  travels on the edge between i and j 

 

The assumption for solving edge detection problems is that 

each pixel is connected with all its 8-neighborhood pixels 

within the scope of image data. The ants are initialized on 

endpoints with the strong intensities. The search region is 

expanded to find compensation segments to repair those 

fragmented edges. In general, a large threshold setting can lead 

to important information missing, in contrary, a small threshold 

setting will cause false identification of irrelevant information 

like noises. Thresholding is actually used to detect each pixel 

location and make a binary decision if it truly lies in edge or 

not. To avoid redundancy and false edge generation, the rule for 

thresholding should ensure that total number of iterations is in a 

reasonable range.  

 

4. NUMERICAL SIMULATIONS 

 

In Figs. 5-8, edge detection is conducted for two gray level 

images across the Gulf of Mexico region.  Figs. 5 and 7 result 

from the ACO algorithm while Figs. 6 and 8 result from the 

conventional zero-crossing algorithm. 

  
Figs. 5-6 ACO Edge and Zero Crossing Detection for Image 1 

  
Figs. 7-8 ACO Edge and Zero Crossing Detection for Image 2 

Intuitively, outcomes from the ACO algorithm are better than 

those from the zero-crossing algorithm, with more intrinsic 

information and less false detection. 

 

5. QUANTITATIVE ANALYSIS 

 

Quantitative metrics are introduced to conduct comparative 

studies between two edge detection schemes.   Given two gray 

level digital images with M×N pixels, Occurrence of the gray 

level is described as the co-occurrence matrix of relative 

frequencies. The occurrence probability is computed based on 

the histogram of digital images. 

 

5.1 Correlation 

Correlation has been used to analyze the linear dependency of 

grey levels of the neighboring pixels. It is a standard measure of 

image contrast which depicts the amount of local variations for 

a gray level image. The higher the contrast is, the sharper the 

structural variation is. The correlation is formulated as (4): 
M-1 N-1

i j

i=0 j=0 i j

(i-µ )(j-µ )
CRL = g(i,j)

σ σ
∑∑    (4) 

 

where i and j are coordinates of the co-occurrence matrix; M 

and N represent total row and column numbers of pixels in a 

digital image; g(i, j) represents one element in co-occurrence 

matrix at the coordinates i and j; µi and µj are the horizontal 

mean and vertical mean; σi and σj are the horizontal variance 

and vertical variance. The variance is the measure of gray tone 

variance of an image. 

 

5.2 Dissimilarity 

Dissimilarity between two gray level images is the measure of 

distance between two different sets of co-occurrence matrix 

representations. It depends on the local distance representation, 

which is formulated as (5):  
M-1 N-1

i=0 j=0

DIS= g(i,j) |i-j|∑∑     (5) 

where g(i, j) is an element in the co-occurrence matrix at the 

coordinates i and j; M and N represent total numbers of pixels 

of rows and columns of the digital image. 

 

5.3 Homogeneity  

Homogeneity is a direct measure of the local homogeneity of a 

gray level image, which relates inversely to the image contrast. 

The larger values are corresponding to higher homogeneity and 

smaller values are corresponding to lower homogeneity. The 

higher values of homogeneity measures represent smaller 

structural variations and lower values represent bigger 

structural variations. It is expressed as (6): 
M-1 N-1

2
i=0 j=0

1
HOMO= g(i,j)

1+(i-j)
∑∑    (6) 

 

5.4 Discrete Entropy 

The discrete entropy is interpreted as average uncertainty of the 

information source. It is the measure of information content, 

which is formulated as the sum of products of probability of the 

outcome multiplied by the logarithm of inverse of probability 

of the outcome, considering all possible outcomes {1, 2, …, n} 

as the gray level in the event {x1, x2, …, xn}, where p(i) is the 

probability at the level i, which contains all histogram counts. It 

is expressed as (7): 
k k

2 2

i=1 i=1

1
H(x)= p(i)log = - p(i)log p(i)

p(i)
∑ ∑   (7) 

 



 
5.5 Discrete Energy  

The discrete energy measure is formulated in (8), where E(x) 

represents the discrete energy with 256 bins and p(i) refers to 

the probability distribution functions at different gray levels, 

which contains histogram counts. It shows how the gray level 

elements are distributed. For any constant value of the gray 

level, the energy measure reaches its maximum value of one. 

The larger energy corresponds to lower gray level number and 

the smaller one corresponds to higher gray level number.  

 
k

2

i=1

E(x)= p(i)∑
     (8) 

In Table 1, quantitative metrics for both images are listed. The 

correlation value via ACO is greater than that via zero crossing, 

which matches the source image better. The dissimilarity value 

is bigger and the homogeneity value is smaller when comparing 

between cases of ACO and zero crossing. It indicates that ACO 

detection in fact shows more distinct characteristics of image 

patterns. Meanwhile, the entropy is bigger and the energy is 

smaller when comparing between cases of ACO and zero 

crossing. It depicts again that results using ACO detection 

contains more intrinsic information.   

 

Table 1 Quantitative Metrics of Gulf Images 1-2 
Image 1 

 Metrics 
Source ACO 

Zero 

Crossing 
Correlation 0.7897 0.4589 0.2838 

Dissimilarity 0.2169 0.6141 0.5178 

Homogeneity 0.8989 0.8904 0.9213 

Discrete 

Entropy 
6.7424 2.3229 1.6750 

Discrete 

Energy 
0.0127 0.5249 0.6415  

Image 2 

 Metrics  
Source ACO 

Zero 

Crossing 
Correlation 0.8916 0.4335 0.2482 

Dissimilarity 0.1832 0.5532 0.4518 

Homogeneity 0.9104 0.8989 0.9305 

Discrete 

Entropy 
6.9547 2.2230  1.6069 

Discrete 

Energy 
0.0105 0.5446 0.6575 

 

6. CONCLUSIONS 

 

The metaheuristic optimization approach has been used to 

enhance edge detection based pattern discovery for remote 

sensing data. Some major problems occurred in detection of 

aerial digital images are broken edges and false edges. 

Compared with the classical edge detection approach, the 

enhanced ant colony optimization approach significantly reduce 

the false detection rate and improve the chance to makeup 

broken edges, by introducing artificial intelligence. The ACO 

algorithm is a probabilistic technique simulating the natural 

behavior of ants so as to find global shortest paths through 

combinational optimization, where ants seek a path randomly 

between the colony and sources of food. The comparisons have 

been conducted via both qualitative analysis and quantitative 

analysis.  It has been shown that the enhanced scheme of ACO 

will generate more intrinsic content, less irrelevant information 

and less false edge. The results from both visual appealing and 

objective metrics based on information theories imply that edge 

detection quality is better when the ACO algorithm is applied. 
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