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Abstract – In this study, we used a set of hyperspectral 

Hyperion scenes and assessed the effects of differing 

spectral and spatial resolutions on MODIS-AVHRR 

vegetation index (VI) continuity.  Hyperion scenes were 

processed to simulate atmospherically-corrected 

normalized difference vegetation index (NDVI) and 2-band 

enhanced vegetation index (EVI2) values at MODIS 

Climate Modeling Grid (CMG) and AVHRR Global Area 

Coverage (GAC) resolutions.  Our analysis of their 

differences suggests that MODIS CMG and AVHRR GAC 

VIs can be combined to generate a long-term data record, 

but would be accompanied by added uncertainties due to 

scaling differences.  
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1.  INTRODUCTION 

 

Numerous satellite optical sensors have been launched and 

planned for launch for monitoring and characterization of the 

Earth system and its behaviors.  These sensors have been 

providing and will continue to provide systematic observations 

of terrestrial vegetation at various spatial, spectral, and 

temporal resolutions. Spectral vegetation indices (VIs) are 

among the most widely used satellite data products in 

monitoring temporal and spatial variations of vegetation 

photosynthetic activities and biophysical properties.  Although 

they are not intrinsic physical quantities, VIs are widely used as 

proxies in the assessments of many canopy state and 

biophysical process variables, including leaf area index, 

fraction of absorbed photosynthetically-active radiation, 

vegetation fraction, and gross primary production  (e.g., 

Myneni, Nemani, & Running, 1997; Sims et al., 2008).   

 

Utilities of these observations greatly increase when datasets 

from multiple sensors are combined, e.g., multi-decadal land 

cover characterization and change detection via multi-sensor 

data sources (e.g., Bhattarai, Conway, & Yousef, 2009; Jepson, 

Brannstrom, & Filippi, 2010; Paudel & Andersen, 2010), 

synergistic applications of multi-resolution remote sensing for 

forest and rangeland inventory (e.g., DeFries et al., 2007; 

Miettinen & Liew, 2009), and a development of multi-sensor, 

long-term data records for climate studies (Yu, Privette, & 

Pinheiro, 2005; Tucker et al., 2005; Pedelty et al., 2007). 

 

Applications of multi-sensor observations, however, require 

consideration and account of  continuity and compatibility due 

to differences in sensor/platform characteristics (Teillet, Staenz, 

& Williams, 1997; Batra, Islam, Venturini, Bisht, & Jiang, 

2006).  One key sensor characteristic that varies widely among 

sensors is the spectral bandpass filters and many previous 

studies have focused on this “spectral” issue (e.g., Trishchenko, 

Cihlar, & Li, 2002).  Another key sensor characteristic that 

varies across sensors is spatial resolution (point spread 

function, PSF).  Although it is critical, the spatial issue of 

continuity has not been paid as much attention as the spectral 

issue (e.g., Chen, 1999).   

 

Hyperspectral remote sensing has great potential in addressing 

these key issues of multi-sensor VI continuity and providing 

deeper insights and understanding of them.  An ultimate 

advantage of using hyperspectral remote sensing for multi-

sensor continuity studies is that it allows to analyze the effects 

of multiple factors individually and simultaneously (Teillet et 

al., 1997).  Current and future hyperspectral sensors provide 

medium resolution images (3 – 100 m spatial resolution with 30 

m being typical) with swaths of 3 – 150 km with 30 km being 

typical.  These resolutions are fine enough and these swath 

widths are wide enough to allow to simulate various pixel 

footprint sizes via spatial aggregation.  The aggregated data can 

be used to examine VI compatibility across multiple resolutions 

(Huete, Ho-Jin, & Miura, 2005). 

 

In this study, we assessed the effects of spectral bandpass and 

spatial resolution differences on cross-sensor VI continuity.  

Specifically, we analyzed inter-sensor compatibility between 

AVHRR Global Area Coverage (GAC) and MODIS Climate 

Modeling Grid pixels for two indices, the Normalized 

Difference Vegetation Index (NDVI) (Tucker, 1979) and 2-

band Enhanced Vegetation Index (EVI2) (Jiang, Huete, Didan, 

& Miura, 2008) using hyperspectral data obtained with Earth 

Observing-One (EO-1) Hyperion (Ungar, Pearlman, 

Mendenhall, & Reuter, 2003).  Our particular interest was to 

assess scaling uncertainties that would arise in absence and 

presence of spectral bandpass differences.   

 

2.  MATERIALS 

 

Five study sites were selected within the conterminous United 

States (Table 1), based upon availability of nearly cloud-free 

Hyperion scenes, availability of in situ atmospheric 

measurements from the Aerosol Robotic Network (AERONET) 

(Holben et al., 2001), and a diversity of land cover types.  Level 

1R Hyperion scenes were obtained for the 5 sites for the dates 

listed in Table 1.  For each Hyperion scene, Level 2 AERONET 

data were acquired for a two hour time period bracketing the 

image acquisition time (± one hour).   

 

Hyperion images were spectrally-convolved to spectral 

bandpasses of the Terra MODIS and NOAA-14 AVHRR 

sensors and converted to top-of-atmosphere (TOA) 

reflectances.  The spectral response curves of these satellite 

sensors were splined to Hyperion band center wavelengths for 

each Hyperion pixel (Miura, Huete, & Yoshioka, 2006) as 

every Hyperion pixel had a slightly different spectral 

calibration (spectral smile) (Pearlman et al., 2003).   

 

These spectrally-convolved Hyperion TOA reflectance scenes 

were spatially convolved to MODIS 500 m and AVHRR 1.1 

______________________________________ 

*  Corresponding author. 

** This work was supported partially by a NASA contract, NNX08AT05A. 



  

km resolutions.  We assumed a triangular and bell-shaped PSF 

in the scan direction for MODIS and AVHRR, respectively, 

and a rectangular PSF in the track direction for both MODIS 

and AVHRR (Wolfe et al., 2002; Schowengerdt, 2006).  The 

latter data were further averaged to produce GAC pixels.  A 

GAC pixel value represents the mean of four out of each five 

consecutive samples along the scan line (Pinheiro, Mahoney, 

Privette, & Tucker, 2006).  

 

These spectrally- and spatially-convolved images were  

corrected for atmosphere with the “6S” radiative transfer code 

(Vermote et al., 2006).  The 6S radiative transfer code was 

constrained with scene specific geometric conditions extracted 

from the corresponding image metadata and in situ AERONET 

atmospheric data.  The continental aerosol model was assumed 

for all the aerosol corrections, based on the aerosol model 

selection criteria described in Kaufman et al. Kaufman et al. 

(1997).  After the atmospheric corrections, the simulated 

MODIS 500 m resolution data were spatially aggregated into 

CMG pixels (5 km-by-5 km).   

 

The two VIs, NDVI and EVI2, were computed from the 

atmospherically-corrected CMG and GAC resolution data   

 NDVI =
ρNIR − ρred
ρNIR + ρred

 ,   (1) 

 EVI2 = 2.5
ρNIR − ρred

ρNIR + 2.4ρred +1
 ,  (2) 

where ρNIR and ρred are the NIR and red reflectances.  The EVI2 

equation have been optimized to achieve the best similarity 

with the original, 3-band EVI and is applicable to sensors 

without a blue band (Jiang et al., 2008). 

 

3.  METHODS 

 

Central to VI spatial compatibility is the scale-invariance 

properties or scaling uncertainties of VIs under the influence of 

land surface heterogeneity (Hall, Huemmrich, Goetz, Sellers, & 

Nickeson, 1992; Friedl, Davis, Michaelsen, & Moritz, 1995; Hu 

& Islam, 1997; Chen, 1999).  Below, we compare the finer and 

coarser resolution VIs using the NDVI as an example.   

 

The fine grain NDVI can be aggregated to a coarser resolution 

pixel by (Hu & Islam, 1997; Huete et al., 2005) 

   
NDVI fine = f1⋅ NDVI1 + f2 ⋅ NDVI2

=
f1⋅ (ρNIR,1 − ρred,1)

ρNIR,1 + ρred,1

+
f2 ⋅ (ρNIR,2 − ρred,2)

ρNIR,2 + ρred,2

 , (3) 

where two surface types with the fractional amounts of f1 and f2 

(f1 + f2 = 1) are assumed.  This quantity is not generally equal to 

the coarser resolution NDVI computed from the reflectances at 

the resolution analyzed, which can be expressed using the fine 

grain reflectances as 

 
NDVIcoarse =

( f1⋅ ρNIR,1 + f2 ⋅ ρNIR,2) − ( f1⋅ ρred,1 + f2 ⋅ ρred,2)

( f1⋅ ρNIR,1 + f2 ⋅ ρNIR,2) + ( f1⋅ ρred,1 + f2 ⋅ ρred,2)

=
f1⋅ (ρNIR,1 − ρred,1) + f2 ⋅ (ρNIR,2 − ρred,2)

f1⋅ (ρNIR,1 + ρred,1) + f2 ⋅ (ρNIR,2 + ρred,2)

 , (4) 

and, thus,  

 NDVIcoarse ≠ NDVIfine
 or D ≡ NDVIcoarse −NDVIfine ≠ 0  . (5) 

These two quantities are equal, or the quantity D is equal to 

zero (1) when either f1 or f2 is equal to zero (i.e., homogeneous 

case) (Huete et al., 2005) or (2) when the 1-norms of the two 

endmember spectra are equal (i.e., ρNIR,1 + ρred,1 = ρNIR,2 + ρred,2
) 

(Hu & Islam, 1997).  Theoretically, at least, the former also 

applies to the EVI2 formula (Huete et al., 2005).  

 

To assess scaling uncertainties between GAC and CMG pixels, 

five of GAC pixels were averaged to generate fine-grain VI 

values approximately equal to the CMG pixel size.  These 

spatial aggregations and averaging of Hyperion pixels were 

performed carefully and systematically so that the derived fine-

grain GAC and coarse-grain CMG pixels were co-located 

without mis-registration.  

 

4.  RESULTS 

 

In Figs. 1a and 1b, only the effect of the spectral bandpass 

difference between Terra MODIS and NOAA-14 AVHRR on 

the NDVI and EVI2, respectively, was assessed for the two 

spatial resolutions.  MODIS-AVHRR cross-sensor NDVI and 

EVI2 relationships for the GAC resolution were basically the 

same as those for the CMG resolution, i.e., the trends in the 

relationships were the same for the two resolutions.   

 

In Figs. 1c and 1d, only the effects of the spatial resolution 

difference between the CMG and GAC resolutions (scaling 

uncertainties) was assessed for the NDVI and EVI2, 

respectively, by fixing the spectral bandpasses.  There were 

large variations in scale-induced differences for all the four 

cases (MODIS NDVI, AVHRR NDVI, MODIS EVI2, and 

AVHRR EVI2), ranging from -.05 to .05 at most for MODIS 

NDVI (Fig. 1c); however, these scaling uncertainties did not 

appear to introduce any systematic differences (i.e., mean 

differences ≈ 0).   

 

In Figs. 1e and 1f, the combined effects of the spectral 

bandpass and spatial resolution differences between MODIS 

CMG and AVHRR GAC VIs were assessed for the NDVI and 

EVI2, respectively.  For both the NDVI and EVI2, the trends in 

cross-sensor relationships remained similar to those due only to 

the spectral bandpass difference; however, the secondary 

scattering about the mean trends became larger due to the scale-

induced variations.  These results suggest that MODIS CMG 

and AVHRR GAC VIs can be combined to generate a long-

term data record, but would be accompanied by added 

uncertainties due to scaling differences.   

 

5.  DISCUSSIONS 

 

The assessment conducted in this study can be expanded to a 

larger dataset to obtain more reliable estimates of scaling 

uncertainties.  We also plan to evaluate how well GAC pixels 

(1 km-by-5 km) represent CMG grids (5 km-by-5 km) and the 

impact of no aerosol correction on AVHRR-MODIS continuity.  
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Table 1.  List of Study Sites, Hyperion Image Properties 

Geographic Location 

Latitude /  

Longitude Biome Type 

Date 

(yyyy/mm/dd) 

θθθθs / θθθθv
a 

(degrees) 

Harvard Forest, MA 42.532o /-72.188o Broadleaf Forest 2001/09/05 

2008/05/07 

2008/05/25 

2008/05/30 

2008/06/07 

2008/12/03 

40.5 / 3.6 

32.2 /12.1 

28.5 / 4.8 

28.6 /12.8 

26.2 /10.1 

67.1 / 5.2 

Walker Branch, TN 35.958o /-84.287o Broadleaf Forest 2001/08/14 31.3 / 2.3 

Maricopa, AZ 33.069o / -111.972o Broadleaf Cropland /  

Open Shrubland 

2001/05/24 

2001/07/27 

2001/08/28 

2001/12/02 

2001/12/18 

23.3 / 5.5 

26.4 / 5.4 

32.3 / 5.0 

58.6 / 4.6 

60.5 / 4.7 

Konza Prairie, KS 39.102o /-96.610o Prairie Grassland /  

Cereal Crop 

2002/10/19 

2009/05/08 

52.3 / 2.6 

29.4 / 1.3 

Sevilleta, NM 34.355o /-106.885o Semi-arid Grassland /  

Open Shrubland /  

Cereal Crop 

2001/10/19 

2009/01/16 

2009/09/25 

2009/10/05 

2009/11/05 

2009/12/06 

48.8 / 5.0 

61.5 /16.9 

40.8 / 4.3 

45.2 /18.6 

54.2 /12.1 

60.8 / 5.7 

  a – θs : solar zenith angle, θv: view zenith angle 

 

 
 

Fig. 1.  (a) NDVI and (b) EVI2 differences due to spectral bandpass differences for CMG and GAC resolutions; (c) NDVI and (d) 

EVI2 differences due to spatial resolution differences for AVHRR and MODIS spectral bandpasses; (e) NDVI and (f) EVI2 

differences due to both spectral bandpass (MODIS vs. AVHRR) and spatial resolution (CMG vs. GAC) differences.  Here, a GAC 

pixel is an average of five GAC pixels and, thus, written as “GAC x 5”.  


