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Abstract - Automatic extraction of man-made objects from 

remotely sensed data is an important and challenging task. 

A method is proposed for edge extraction from objects by 

analyzing the patterns of the distribution of the gradient 

directions. Once the gradient of a given image is obtained, 

its magnitude is used to find edges and its direction is used 

in the process of extracting objects. The pattern of the 

gradient direction distribution of each edge segment is then 

studied. Objects with straight edges like buildings can be 

detected using their specific patterns. The method is applied 

to airborne LiDAR data to extract building edges. By using 

this method, building edges can be extracted with improved 

accuracy. 
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1. INTRODUCTION 

Automatic detection of man-made objects such as buildings are 

important for urban land use mapping, urban Geographic 

Information System (GIS) updating, natural hazard studies, 

urban climate modeling, and so on. In the recent decade, 

LiDAR data (NOAA) have been widely used in 3D building 

modeling, where building edge extraction plays a significant 

role in the process. LiDAR data provide highly accurate 

georeferenced elevation points such that objects with height are 

clearly shown in the image. LiDAR images are usually of super 

high resolutions and a lot of conventional noises are not found 

in the images. However, building edge extraction from LiDAR 

images of urban areas is still not easy. For example, edges 

caused by trees with similar heights of buildings are not easy 

eliminated, and building edges in a LiDAR image are usually 

coarse so the detected edges tend to be zigzagged, which are 

not smoothly straight.   

 

In this paper, we use a wavelet transformation based gradient 

operator to detect edges and then use information of the 

gradient directions of each edge segment to extract linear object 

edges such as building edges. Gradient operators usually 

contain smoothing processing and this makes it reasonable to 

consider a bigger neighborhood of a pixel when computing 

partial derivatives on it. Since each pixel in the neighborhood 

determines a direction, a bigger neighborhood gives more 

gradient directions such that a more accurate distribution of the 

gradient directions can be obtained. For a pixel, a 5 by 5 

window is used to calculate 16 directions. In this window, 16 

pixels that is one pixel away from the center are used to 

determine 16 directions, and this makes the analysis of the 

pattern of the distribution of directions more accurate, 

compared with that only 8 directions are used within a 3 by 3 

window. 

 

The distribution of the gradient directions of the edges of an 

object with linear boundaries shows specific patterns. 

Characteristics of the patterns are studied in the paper and are 

used to extract linear edges. We propose a way to determine the 

probability of whether a single edge segment is a straight linear 

edge.  

 

The method to extract linear edges of objects such as buildings 

is briefly described as follows: Use a wavelet transformation 

based gradient operator to detect the edges of the given image. 

Then the edges are decomposed into disconnected segments. 

And then the pattern of the distribution of the gradient 

directions of each segment is studied and a probability is 

computed. Finally, a size threshold and a probability threshold 

are used to filter out the noises and non-linear edges. This 

method is applied on LiDAR images to extract building edges. 

These edge segments generally have bigger sizes and higher 

probabilities so they can be effectively extracted.  

 

2. EDGE DETECTION WITH GRADIENT OPERATOR 

 

2.1 Gradient operator with smoothing processing 

Gradient operators are classic methods used in edge detection. 

Usually, a gradient operator consists of a pair or more masks to 

compute the partial derivatives of a given image, which are 

used to find the gradient of the image. Edges have big 

magnitude of the gradient in an image so they can be easily 

detected by a gradient operator. Extracting edges of specific 

kinds must delete a large amount of irrelevant edge segments 

and noises from the edge image produced by the gradient 

operator.  

 

To attenuate noises in an image, a typical gradient operator 

carries smoothing processing, such as the smoothing processing 

embedded in the classical Prewitt operator and Sobel operator, 

and the explicit smoothing processing as the first step in 

Canny’s operator (Chen). When computing a partial derivative 

at a pixel, the difference between the intensities of two neighbor 

pixels locating on both sides of the pixel along a specific 

direction is used. When a partial derivative mask is of small 
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size, which causes slight smoothing effect, the neighboring 

pixels that are adjacent to the center pixel are used in the 

computation of difference. 

 

However, it is very often in edge detection using a gradient 

operator that bigger sizes of neighborhoods are used, so the 

smoothing processing of the operator greatly attenuates the 

difference between the intensities of pixels that are very close 

to each other. This means the eight-pixel neighborhood of a 

pixel is no longer adequate to be used to find the partial 

derivatives. In high resolution images, objects of interest are 

usually big in size and pixels farther away from the edge pixels 

are less affected by the smoothing processing. Therefore, at an 

edge pixel, it is more reasonable to use the difference between 

intensities of two pixels on different side that are a little farther 

apart to determine its partial derivative. Of course, they cannot 

be too far away. For a pixel, the 5 by 5 window is a good choice 

in the computation of its partial derivatives. This results in that 

16 directions can be considered in the gradient calculation.  

 

Gradient directions have not been fully exploited in edge 

extraction. In fact, information from the gradient directions of 

an image could be used to determine the characteristics of 

objects with specific geometric shapes. Sixteen gradient 

directions would provide a fine sample space to study the 

distribution of the directions. To use 16 directions in an 

application, the classical gradient operators such as the Prewitt 

operator and the Sobel operator with fixed size of 3 by 3 are 

inappropriate. Canny’s operator would be a good choice since 

the Gaussian smoothing function can be scaled to use bigger 

masks (Canny). Specifically designed gradient operators would 

also work if the embedded smoothing processing is well 

designed. In this paper, we use a wavelet transformation based 

gradient operator to detect edges because of the flexibilities in 

choosing the smoothing functions and scaling.  

 

2.2 Wavelet transformation based gradient operator 

A wavelet function is derived from a smoothing function. A one 

dimensional smoothing function, denoted as ( )xθ , is defined as 

an even, differentiable, finitely supported function, which is 

decreasing on 0x > . It can be scaled to any level 0s > , 

producing a scaled smoothing function ( ) ( / ) /s x x s sθ θ= . The 

derivative of a smoothing function ( )xθ  gives a wavelet 

function, denoted as ( )xφ , which can also be scaled to any 

level 0s > , yielding a scaled wavelet function. The scaled 

wavelet function is proportional to the derivative of the 

corresponding scaled smoothing function, which is 

( )( ) ( / ) / ( ) '.s sx x s s s xφ φ θ= =  

The wavelet transformation of a function ( )f x  at scale level 

0s >  is defined as the convolution 

( ) ( ).s sW f x f xφ= ∗  
An important property of the wavelet transformation of a 

function ( )f x  is that it is proportional to the derivative of the 

smoothed function ( )( )sf xθ∗  obtained by smoothing the 

given function to the scale level s (Mallat and Zhong), which is 

( ) ( ) '( ).s sW f x s f xθ= ∗  
When the process is generalized to the two dimensional 

situation, a gradient operator can be defined. 

For the two dimensional smoothing function scaled to level s, 

( , ) ( ) ( )s s sx y x yθ θΘ = , where ( ) ( / ) /s x x s sθ θ=  is a scaled 

smoothing function, its two partial derivatives give two wavelet 

functions, also scaled to level s. The two dimensional wavelet 

transformation of a function ( , )f x y  at scale level s is defined 

as a vector with two components, 

( )' '
( ) ( , ),( ) ( , ) .s x s ys f x y f x y∗Θ ∗Θ  

Similar to the one dimensional case, this vector is proportional 

to the gradient of the smoothed function that is obtained by 

smoothing the given function ( , )f x y  to scale level s. When it 

is applied on an image function, it is equivalent to a gradient 

operator with embedded smoothing processing. 

 

To design a wavelet transformation based gradient operator, one 

can start to design an appropriate smoothing function 

depending on the type of application. The operator can be 

flexibly scaled to an appropriate level so that 16 directions can 

be used. A pixel is detected as an edge pixel if the magnitude of 

the gradient at the position is a local maximum along the 

gradient direction at the same position. Since 16 directions are 

considered the edges are detected more accurately.  

 

Another important use of gradient directions is to make pattern 

analysis of their distribution. Objects with specific geometric 

shapes have specific characteristics in the distributions of 

gradient directions. Objects with linear edges like buildings 

show clear patterns in the distributions, although they might be 

affected by irrelevant objects and noises, so the edges can be 

extracted if the patterns are not heavily affected. 

 

3. DISTRIBUTION OF GRADIENT DIRECTION 

 

3.1 Distribution of gradient directions and patterns of linear 

edges 

For the 16 directions, each one is assigned a number between 0 

and 15. When computing the gradient of a given image, the 

magnitude and the direction of the gradient at each pixel are 

saved for later analysis. After the edges are detected, we can 

study the histogram of the gradient directions of the edges to 

characterize the patterns of some specific edge types.  

 

The distribution of the gradient directions of edges depends on 

the edge types and the region size covered. Usually, the 

distribution covering the whole image does not show useful 

information about the edges, because it is just a mixture of all 

the information about different types of edges, including edges 

of irrelevant objects and noises. Distributions of the gradient 

directions can be obtained over sub regions and edges can be 

extracted separately from the sub regions. Although a smaller 

size of region would sometimes show a clearer pattern in the 

distribution of gradient directions, irrelevant objects in the 

region still affect the distribution. Besides, the sizes of sub 

regions cannot be determined automatically. In this paper we 

use an edge segment oriented method to study the distribution 

of the gradient direction of each edge segment.  

 

When the edges are obtained by the gradient operator, they are 

decomposed into disconnected segments. A threshold may be 



used to eliminate small irrelevant objects and noises. Each edge 

segment is then checked on the distribution of the gradient 

directions and if the pattern is of a kind for extraction then the 

edge segment is kept, otherwise it is removed.  

 

Not every object shows a clear pattern in the distribution of 

gradient directions and different kinds of objects may show 

similar patterns. However, objects with linear edges have 

specific patterns and they can be characterized in the 

distributions. This is very helpful in edge extraction for objects 

with linear edges such as road network and buildings. 

 

An object with linear edges usually has a few outstanding bars 

in its histogram of gradient directions. The main edges of a 

building consist of a few linear edges and their gradient 

directions are perpendicular to their real geometric directions. 

The relations among the linear edges are reflected in their 

gradient directions. Buildings with corners of ninety degrees 

show a pattern in the histogram that long bars contributed by 

the gradient of the linear edges are apart away with a distance 

of 4. Unfortunately, the following things affect the patterns of 

linear objects: some irrelevant edges attach to the edges of 

linear objects; except the main linear edges, the objects have 

some other edges that are not linear; the detected linear edges 

are not smoothly straight that are zigzag in details. On the other 

hand, irregular edge segments may show similar patterns in the 

distribution of gradient directions to that of linear objects. 

Some measure on a distribution of the gradient directions of an 

edge should be introduced to give the probably of that the edge 

segment is linear.  

 

3.2 Probabilities of linear objects 

We introduce a crossbar to measure how the main gradient 

directions are outstanding over other directions. For 

convenience we first normalize the histogram of the gradient 

directions of an edge segment such that the highest bar has 

value 100. A crossbar is the least value, denoted by c, such that 

the number of bars in the histogram that are not lower than the 

value is not more than a predefined number n. The predefined 

number n in our experiment is 8 when 16 directions are used. 

Based on the application, n could be selected as a smaller 

number. Generally, the crossbar tells there are n bars in the 

histogram such that they are higher than c. The less the value of 

c, the more outstanding the higher bars are over the remaining 

lower bars. In a clear pattern of linear objects, the crossbar is 

apparently low. 

 

In a normalized histogram, a bar represents a main gradient 

direction if it is above the crossbar and it is the longest bar 

among those of near directions. We consider no more than four 

main gradient directions for the edges of a building in general. 

To find a main gradient direction, one just needs to compare a 

bar with its neighbors in a histogram to see whether it is a local 

maximum. It is not difficult to find up to four local maxima, 

whose values are no less than the remaining values, and the 

indexes of the gradient directions they correspond to.  

 

With the number of main gradient directions, the heights of 

their bars in the normalized histogram compared with the 

crossbar value, and the distances the main gradient directions 

apart away from the adjacent main gradient directions, a value 

can be assigned to indicate the probability of whether the edge 

segment is from a linear object. The probability is experimental, 

but the following two aspects are essentially significant, which 

should be combined in the consideration. 

1. The lower the crossbar, the higher the probability. A low 

crossbar indicates that a few main gradient directions 

are outstanding in the normalized histogram. These 

main gradient directions could represent linear edges. 

2. If the main gradient directions are sparsely scattered, 

then the probability is high. This is because objects such 

as buildings have linear edges in quite different 

directions. If some main gradient directions are near 

together, the probability is reduced.  

 

Here are some experimental results. If there is only one main 

gradient direction, the probability is basically determined by the 

crossbar; and if the probability is high, the edge segment could 

be a side of a linear object. If there are two main gradient 

directions and their bars in the histogram is apart away with a 

distance of 4, and if the crossbar is low at the same time, then 

the edge segment could be two adjacent, perpendicular sides of 

some object. Similarly, if there are three or four main gradient 

directions sparsely scattered in the histogram and the crossbar 

is low at the same time, it is highly probably that the edge 

segment belongs to an object with linear sides.  

 

There are some other considerations when determine the 

probability. For example, the choice of the number n in the 

definition of the crossbar affects the probability. Also, if the 

size of an edge segment is too small, the lack of enough 

samples makes the probability inaccurate. In fact, tiny segments 

should be eliminated directly from the edge image.  

 

4. AN EXPERIMENTAL EXAMPLE 

 

We apply the proposed method to extract building edges in a 

LiDAR image of an urban area, where vegetation is a main 

obstacle to the extraction. See Figure 1.  

 

A wavelet transformation base gradient is used to detect the 

edges of the image. An edge pixel is determined if the 

magnitude of the gradient on the position is a local maximum 

along its gradient direction. Sixteen directions are taken into 

consideration. Figure 2 shows the detected edges.  

 

The edges are then decomposed into disconnected segments. 

Small segments are eliminated with a threshold and then each 

remaining segment is checked on its distribution of the gradient 

directions. The probability of whether the segment is a linear 

edge, which is a side segment of a building, is determined by a 

properly selected crossbar and how the main gradient directions 

in the distribution are scattered. A threshold is selected to 

eliminate the edge segments with low probabilities. The 

extracted building edges are shown in Figure 3, with a small 

amount of irrelevant edge segments caused by trees included. 



To illustrate the effectiveness of the method, lower vegetation 

areas are purposely not masked out beforehand and all the edge 

pixel intensities are set to zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A LiDAR image of an urban area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Edges detected with a wavelet transformation based 

gradient operator. 

 

 

5. CONCLUSION 

 

In this paper a method to extract straight linear edges is 

proposed and applied on building edge extraction from a 

LiDAR image of an urban area. A wavelet transformation based 

gradient is used to detect the edges, during which heavy 

smoothing process is performed. Sixteen directions are 

considered and the distribution of the gradient directions of 

each edge segment is checked to look for some characteristics 

of linear edges. A probability is assigned to each edge segment 

to indicate how possible it is a linear edge. The probability is 

based on the study of the patterns of the distribution of the 

gradient directions. When the parameters in the method are 

properly selected, it is effective on linear edge extraction from 

the LiDAR image with high resolutions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Linear edges of buildings extracted from the edge 

image of Figure 2. 
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