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Abstract - We present a method to map annual land-

use/land-cover (LULC) change using low-cost and 

consistent data from the MODIS satellite and Google 

Earth reference data. Our LULC maps cover Latin 

America and the Caribbean from years 2001 to 2009, have 

a 250-m pixel size, and include eight general classes.  Maps 

were produced within 27 separate zonal biomes using the 

Random Forests classifier.  We found that accuracy of the 

maps is sensitive to broad climatic and vegetation 

differences encapsulated by biomes, with an average 

84.9% (s.d.±6.3%) overall accuracy for a five-class 

reclassification. Trends in woody vegetation area were 

analyzed using all years and pixels aggregated at 

ecoregion and municipality scales. The largest hotspots of 

deforestation were in South America, concentrated mostly 

in moist forests around the south to west Amazon basin 

and western edge of Atlantic forests, and dry forests in the 

Chaco ecoregions of northern Argentina. Driving factors 

included mostly pastures for cattle and industrial-scale 

agriculture for global export.  We also detected increasing 

woody vegetation in northern Mexican deserts and in dry 

forests of southern Bolivia.  Although not thoroughly 

evaluated, possible factors driving increased woody 

vegetation could be local increase in precipitation and the 

mitigating influence of protected areas.  
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1. INTRODUCTION 

 

In the 21st century, economic globalization and climate change 

have risen in importance as forces having broad-scale impacts 

on human and natural systems.  Some aspects of economic 

globalization are positive for human systems, such as poverty 

reduction.  However, globalization and climate change 

presage a host of negative effects for natural systems, such as 

land conversion for mechanized agriculture that supports 

global food supply and climate-induced shifts in species 

distributions, abundance and susceptibility to extinction.  

 

The twin forces of globalization and climate change are 

producing shifts in Latin America and the Caribbean (LAC) 

land use that are not well understood, partially because there 

is an acute lack of land-use/land-cover (LULC) datasets 

across the region (Clark et al., 2010).  To date, most analyses 

of land change have focused on loss of forest cover, (i.e., 

deforestation), ignoring reforestation or other land-use 

dynamics.  At sub-national scales, the Brazilian Landsat-based 

PRODES program is a model deforestation monitoring 

program (http://www.obt.inpe.br/prodes), but this type of 

program is unique to LAC.  Recently, Hansen and colleagues 

(2010) presented global forest cover loss assessment based on 

continuous percent forest cover estimated from 250-m 

MODIS data and calibrated with multi-temporal samples of 

Landsat-derived forest-loss maps. The data from that study 

revealed that South America contains the largest global share 

of forest cover, but is also ranked third among continents in 

terms of deforestation rates.  In particular, Brazil had the 

highest loss of forest cover of any nation, with deforestation in 

both the moist tropical forests (e.g., Amazon basin) and dry 

forests (e.g., Cerrado).  Paraguay and Argentina also had 

clearing of both moist and dry forests, mainly for increased 

mechanized agriculture, such as soybean production, or cattle 

pastures.   

 

We have developed a MODIS-based method to map recent 

land change at broad spatial scales with internally-consistent 

imagery and reference datasets. The method, explained 

originally in Clark et al. (2010) for the Dry Chaco ecoregion 

of Argentina, Paraguay and Bolivia, provides wall-to-wall 

LULC thematic maps on an annual basis starting in year 2001, 

with a 250-m pixel size.  Here we present modifications of 

this method for continental-scale mapping of LULC across 

Latin America and the Caribbean.  We assess the accuracy of 

the maps by regional biomes and then assess trends in woody 

vegetation (e.g., forest, woodlands, shrublands) change – both 

loss and gain – at municipality and ecoregion scales.  

 

2. METHODS 

 

2.1 Study area 

The study area included all countries in Latin America and the 

Caribbean (LAC). The study area was divided into 11 

“latitudinal” zones, and each zone was split by dominant 

biome (Olson et al., 2001) with boundaries modified to follow 

municipalities within countries (Table A).  This created a total 

of 27 separate mapping zone-biome combinations. 

 

2.2 Reference data 

Reference data for classifier training and accuracy assessment 

were collected with human interpretation of high-resolution 

imagery in Google Earth (GE, earth.google.com).  Most of 

this imagery in our study area is from Digital Globe’s 

QuickBird (www.digitalglobe.com) and Geoeye’s IKONOS 

(www.geoeye.com) commercial satellites, and all samples 

included the image’s acquisition year.  Sample centers were 

snapped to the closest MODIS pixel, described below, and no 

sample was closer than 1000 m to a neighboring sample.  

Interpretation criteria and error-checking protocols followed 

those in Clark et al., (2010), were conducted using an 

automated web-based tool called the Virtual Interpretation of 

Earth Web-Interface Tool (VIEW-IT), and will be described 

in a forthcoming paper.  Within VIEW-IT, samples were 

placed haphazardly across LAC in areas that had >80% cover 

seven class types: woody vegetation (Woody), herbaceous 

vegetation (Herb), agriculture (Ag), plantations (Plant), built-

up areas (Built), bare areas (Bare), and water (Water).  Areas 

with 20-80% Woody, with a Bare, Herb or Ag component, 
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were assigned to a mixed-woody vegetation class 

(MixWoody).   

 

Table A. Zone and biomes (Olson et al., 2001) and total 

sample counts used in each separate Random Forest (n=27).  

These include only samples filtered by the Random Forests 

outlier removal process. 

Zone- 

Biome 

Geographic region No. of 

Samples 

Tropical & Subtropical Moist Broadleaf Forests (TSMBF) 

z01_b01 Mexico  1,354 

z02_b01 Central America  2,082 

z03_b01 Northern South America  2,140 

z04_b01 Western South America 1,191 

z06_b01 Amazon basin 5,035 

z07_b01 Atlantic moist forest (Brazil) 1,030 

z11_b01 Caribbean (all biomes) 1,486 

Tropical & Subtropical Dry Broadleaf Forests (TSDBF) 

z01_b02 Mexico 1,577 

z02_b02 Central America 1,062 

z03_b02 Northern South America 1,809 

z04_b02 Western South America 330 

Tropical & Subtropical Coniferous Forests (TSCF) 

z01_b03 Mexico 1,532 

z02_b03 Central America 1,422 

Temperate Broadleaf & Mixed Forests (TBMF) 

z05_b04 Southern South America 1,935 

Trop. & Subtrop. Grasslands, Savannas, Shrubland (TSGSS)  

z03_b07 Northern South America (Llanos) 1,130 

z04_b07 Beni savanna (Bolivia) 485 

z05_b07 Humid Chaco (Argentina, Paraguay) 443 

z06_b07 Cerrado (Brazil) 1,460 

z08_b07 Uruguayan savanna ecoregion 868 

z10_b07 Dry Chaco (Arg., Bolivia, Paraguay) 3,396 

Temperate Grasslands, Savannas & Shrublands (TGSS) 

z05_b08 Pampas and Patagonia (Argentina) 3,030 

Flooded Grasslands & Savannas (FGS) 

z09_b09 Pantanal (Brazil, Bolivia) 447 

Montane Grasslands & Shrublands (MGS) 

z04_b10 Andean puna (Arg., Chile, Bol., Peru) 802 

Mediterranean Forests, Woodlands, and Scrub (MFWS) 

z05_b12 Chilean mattoral 551 

Deserts & Xeric Shrublands (DXS) 

z01_b13 Mexico 2,248 

z04_b13 Western South America coast 753 

z06_b13 Caatinga (Brazil) 724 

 

2.3 Mapping process 

We used the MODIS MOD13Q1 Vegetation Indices 250 m 

product (Collection 5) for LULC classification.  The product 

is a 16-day composite of the highest-quality pixels from daily 

images and includes the Enhanced Vegetation Index (EVI), 

red, near infrared (NIR), and mid-infrared (MIR) reflectance 

and pixel reliability, with 23 samples per year (Huete et al., 

2002).  In this analysis, we used 39 MODIS tiles that cover 

LAC with all scenes from years 2001 to 2009.  MODIS scenes 

were reprojected from their native Sinusoidal projection to the 

Interrupted Goode Homolosine projection (sphere radius of 

6,378,137.0 m) using nearest-neighbor resampling.  The 

original cell size of 231.7 meters was maintained in the 

reprojection. 

 

For each pixel, we calculated the statistics mean, standard 

deviation, minimum, maximum and range for EVI, and red, 

NIR and MIR reflectance values from calendar years 2001 to 

2009.  These statistics were calculated for all 12 months 

(annual), 2 six-month periods (bi-annual), and 3 four-month 

periods (tri-annual).  The MOD13Q1 pixel reliability layer 

was used to remove all unreliable samples (value = 3) prior to 

calculating statistics.  

 

We mapped LULC with the Random Forests (RF) tree-based 

classifier (Breiman, 2001), following methods in Clark et al., 

(2010) with the following modifications.  The RF classifier 

was implemented using R (v. 2.11.1; R Development Core 

Team, 2010), the “randomForest” package (v. 4.5-34; Liaw 

and Wiener, 2002), and 1999 trees.  Predictor variables were 

MODIS-based full-year, bi-annual and tri-annual statistics for 

EVI, red, NIR and MIR, and were extracted for the year 

corresponding to the high-resolution image year (2001 to 

2009) for each GE reference sample.  Samples were assigned 

to a zone-biome (Table A).  For each zone-biome mapping 

area, an initial RF was generated with the reference sample 

class and MODIS predictor variables.  The outlier function in 

randomForest was used to eliminate samples with an outlier 

metric greater than 10, and a final RF was generated from the 

remaining samples (Table B).  Accuracy statistics presented 

here are based on the RF “out-of-bag” statistics, which is a 

form of cross-validation that has been shown to have minimal 

bias (Breiman, 2001, Clark et al., 2010). 

 

Table B. Class sample counts from all zones-biome Random 

Forests and after the outlier removal process. 

Class 
No. of 

Samples 
Class 

No. of 

Samples 

Ag 5,140  MixWoody 5,033  

Bare 1,541  Plant 2,436  

Built 2,639  Water 4,159  

Herb 7,931  Woody 11,443  

Total 40,322   

 

We used R and the RGDAL library to apply the final RF 

object to every pixel in the zone-biome for each year, 2001 to 

2009.  The final maps for each zone-biome were then 

mosaicked together for continental-scale analysis.  For our 

accuracy and trend analyses, we reclassified maps to have five 

classes: Woody, Plant/MixWoody, Ag/Herb, Bare/Built, and 

Water. 

 

2.4 Trend analysis 

We focused on trends in the Woody class, as it represents 

change associated with natural vegetation, such as 

deforestation or reforestation, which has important 

implications for species habitat and carbon dynamics.  

Country municipality (n = 16,052) and ecoregions (n = 183) 

(Olson et al., 2001) polygons were overlaid on the mosaicked 

LULC maps. For each polygon (municipality or ecoregion), a 

linear regression of Woody area (dependent variable) against 

time (independent variable, 9 years) was conducted. Reported 

trends are the Pearson correlation coefficients per polygon, 

which is a standardize metric that allows comparison among 

variably-sized polygons.  We present only those polygons 

with a significant slope (p≤0.05). Absolute areas of Woody 

reported for 2001 and 2009 are estimates from the linear 

regression model developed for each polygon. 

 

3. RESULTS AND DISCUSSION 

 

3.1. Accuracy of zonal-biome maps 

Based on RF sample OOB statistics, the average overall 

accuracy of 27 separate RFs with five classes was 84.9% (s.d. 

± 6.3%, Fig. 1). Overall accuracy was lowest in z01_b13, 



  

which includes Mexico’s deserts (e.g., Chihuahua, Sonora) 

and z11_b01, which was all of the Caribbean islands.  The 

highest overall accuracy was in z04_b07 and z08_b07, which 

are the Beni and Uruguayan savanna ecoregions, respectively 

(Fig. 2).  Accuracy for Woody, which is the class that we 

focus on in subsequent trend analyses, had an average 

producer’s accuracy of 84.3% (s.d. ± 22.1%) and an average 

user’s accuracy of 82.7% (s.d. ± 12.4%).  Woody user’s 

accuracy was generally >80% for regions dominated by trees 

(e.g, moist forests, dry forests) while its accuracy was less for 

more sparsely vegetated, drier areas with more shrubs (e.g., 

deserts and Andean puna). Water had consistently high and 

less variable accuracy across zone-biome regions.  In contrast, 

the MixWoody/Plant combined class had relatively low 

accuracy, as these classes had a lot of sub-pixel mixing and 

were generally confused with Woody, Herb and Ag, 

depending on the zone-biome region. 

  

 
Figure. 1.  Random Forests out-of-bag average and standard 

deviation (bars) accuracy for the 5-class maps across all 27 

zone-biomes regions. 

 

 
Figure 2. Overall accuracy (dark gray) and Woody user’s 

accuracy (light gray) for the 27 zone-biome mapping regions 

(see Table A for definitions). 

 

3.2. Trends in woody vegetation over the last decade 

From 2001 to 2009, Woody showed steep declines in the 

Madeira-Tapajós and adjoining Purus-Madeira moist forests 

ecoregions (TSMBF biome), as well as the Dry Chaco 

ecoregion (TSGSS biome), all with correlation coefficients r < 

-0.90 (Fig. 3). The municipality-level trend analysis revealed 

finer spatial patterns (Fig. 4), with clusters of municipalities 

with high deforestation rates in TSMBF around the Amazon 

basin (e.g, “arc of deforestation”) and the Ucayali-Huanuco-

Pasco-Junin region of lowland Peru, both areas with extensive 

cattle pastures.  In this area, the municipalities Porto Velho 

(Rondônia), Novo Progresso (Para), Aripuanã (Mato Groso, 

Fig. 5A) in Brazil had both steep downward trends (r < -0.90) 

and the highest (> 3,950 km2) area of Woody loss from 2001 

to 2009.   

 

  
Figure 3. Linear correlation (r) in Woody vs. year for 

ecoregions (Olson et al., 2001) with significant slopes 

(p≤0.05).   

 
Figure 4. Linear correlation (r) in Woody vs. year for 

municipalities with significant slopes (p≤0.05).  Height of 

municipalities is estimated area of Woody change, 2001 to 

2009 (exaggerated km2 x 25). 

 

There were also several municipalities with rapid 

deforestation in the Alto Paraná Atlantic forests ecoregion 

(TSMBF biome), concentrated in the provinces of Missiones, 

Argentina and Caaguazu and Canindeyu, Paraguay.  These are 

areas with mechanized agriculture and plantations.  In the 

TSGSS biome, hot spots of deforestation were in the northern 

Argentina part of the Dry Chaco ecoregion, with several 

municipalities in Santiago del Estero and Chaco provinces, 

and in the Humid Chaco ecoregion to the east, including 

municipalities in Santa Fe and Formosa provinces.  In 

particular, the municipalities Alberdi, Moreno and Juan Felipe 



  

Ibarra (Santiago del Estero) and Anta (Salta) had both steep 

deforestation trends (r < -0.95) and relatively high estimated 

Woody loss (> 3,162 km2). This TSGSS region has extensive 

dry forests that are mostly converted via initial degradation to 

mechanized agriculture, such as soy beans, although some 

livestock pastures are also in the landscape. 

 

 
Figure 5. Woody vegetation area over time for the 

municipality A) Aripuanã, Brazil and B) Caragua, Bolivia. 

 

Over the past decade, there was a strong Woody increase (e.g., 

woody regrowth or encroachment) in the DXS biome of 

northern Mexico, particularly in the Chihuahuan desert and 

Meseta Central matorral ecoregions (Fig. 3).  Municipalities 

with strong reforestation were in the states of Chihuahua, 

Durango, Nuevo Leon, Sonoma and Zacatecas (Fig. 4). For 

example, the municipality of Carmargo in Chihuahua had an  

r = +0.94 and 4,037 km2 of Woody increase. These increases 

in woody vegetation could be attributed to more precipitation; 

between 2001 and 2009, the Chihuahua and Nuevo Leon 

experienced an average increase in precipitation of 38% and 

21%, respectively, relative to average precipitation during the 

previous 60 years.  There were multiple municipalities in the 

Cerrado, Caatinga and Alto Paraná Atlantic forest ecoregions 

of Brazil that showed significant trends of increasing Woody 

(Fig. 4).  Most of these municipalities are very small and so 

do not represent large increases in Woody area relative to 

other LAC municipalities, but trends may be from shifts in 

agriculture and local precipitation (Redo et al., in review).  

 

Although not affecting the overall ecoregion change, Woody 

cover also increased significantly in the Sucre municipality, 

Bolivar state, Venezuela (r = +0.73, 4,786 km2 Woody gain) 

and, to a lesser extent, the Cumaribo municipality, Vichada 

state, Colombia (r = +0.78, 1,047 km2 Woody gain, Fig. 4).  It 

is not clear which factors contribute to these trends, as these 

are remote areas with low population density and large 

protected areas.  However, both of these municipalities 

include the sharp southern ecotone of the Llanos savanna 

ecoregion (grasslands) with moist forests, which may be 

susceptible to over-mapping forest relative to grasslands with 

250-m pixels. 

 

The Charagua municipality in Santa Cruz, Bolivia had a 

strong increasing trend in Woody (r = +0.96), with a 

regression-estimated increase of 7,030 km2 from 2001 to 2009 

(Fig. 4, Fig. 5B).  Although the Santa Cruz state includes 

heavy deforestation from mechanized agriculture, the 

Charagua municipality includes the Kaa-Iya del Gran Chaco 

National Park and Integrated Management Natural Area, 

established in 1995 and the largest protected area in Bolivia, 

which prevents broad-scale deforestation in this remote area.  

Some of the reforestation may be due to forest recovery from 

past fire disturbance or from an increase in precipitation.  This 

municipality (and its protected area) is an anomaly in the Dry 

Chaco ecoregion, which has otherwise seen extensive 

deforestation over the last decade (Figs. 3 & 4). 

4. CONCLUSION 

 

Our method of mapping land change in Latin America uses 

low-cost and free data sources for both base imagery and 

reference data, making it useful for mapping at sub-national to 

global scales.  Accuracy of the maps is sensitive to broad 

climatic and vegetation differences encapsulated by biomes, 

with the best accuracy for moist forests and savannas, and 

lower accuracy for deserts. In our cursory analysis of Woody 

trends, targeting the most salient ecoregions and finer-scale 

municipalities, we corroborated work by Hansen et al. (2010) 

using MODIS data from 2000-2005 which were aggregated to 

18.5-km grids: the largest hotspots of deforestation are in 

South America, concentrated mostly in moist forests around 

the south to west Amazon basin and western edge of Atlantic 

forests, and dry forests in the Chaco ecoregions of northern 

Argentina.  The causes for these changes are well established 

– mostly industrial-scale agriculture for global food markets 

and cattle production. However, our data also revealed an 

interesting signal of increasing woody vegetation that may be 

related to local increase in precipitation and the influence of 

protected areas.  More research is needed, with finer-scale 

maps from sensors such as Landsat and field data, to 

corroborate our observed trends. 
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