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Abstract – Fraction of vegetation cover (FVC) is often 

estimated by unmixing a linear mixture model (LMM). In the 

LMM-based algorithm, differences can be seen in 

assumptions and constraints imposed to the model such as 

spectral vegetation index, inducing variations in algorithm. 

As a result, robustness against noises in reflectance spectrum 

is somewhat different among those algorithms, depending on 

a target spectrum to be analyzed, endmember spectra used 

for unmixing, and choice of two-band VI assumed in the 

algorithms. Objective of this study is to propose an analytical 

technique for better algorithm selection under a two-

endmember assumption. Robustness against noises in 

reflectance spectrum is considered as a criterion. This 

criterion is first derived analytically, and then demonstrated 

numerically. It is shown that our proposing technique based 

on the derived factor is an indicator to determine a better 

algorithm against noises for any target spectrum over the 

entire red-NIR reflectance subspace.  

Keywords: fraction of vegetation cover, linear mixture model, 

propagated error, optimum algorithm, vegetation index 

1. INTRODUCTION 

Several algorithms have been proposed to estimate fraction of 

vegetation cover (FVC) for subpixel-level estimation using 

remotely sensed reflectance spectrum (Guilfoyle, 2001; Xiao, 

2005; Kallel, 2007). Unmixing a linear mixture model (LMM) is 

one of the most frequently used algorithms for FVC estimation 

(Smith, 1990). This study focuses on the one called LMM-based 

algorithm. The LMM-based algorithm shows variations itself due 

to differences in assumptions and constraints imposed to the 

models during the retrieval processes. These variations of the 

algorithm induce differences in FVC estimations from an 

identical reflectance spectrum. The relationships among FVCs by 

LMM-based algorithms have been investigated analytically under 

the two-endmember assumptions (Obata, 2010a). Although the 

relationship has been discussed analytically, comparison of their 

robustness against noises in reflectance spectrum has not been 

investigated within the analytical framework.  

In practical application of the FVC algorithms, one encounters 

a decision making process regarding the algorithm choice. This 

type of decision is made mainly from accuracy point of view. For 

example, one approach is to conduct a set of numerical studies 

with numerical models and satellite data to determine accuracy in 

measuring FVC statistically. In this approach, some degree of 

uncertainty is always remained. While, in analytical approach, 

uncertainty can be treated separated from the comparison 

between two algorithms by assuming a certain error in a 

measured spectrum. 

Reflectance spectrum observed by satellite sensor is 

deteriorated by various intervening factors such as instrumental 

noise, atmospheric contamination, and effect of background soil 

(Goward, 1991). Errors in a measured spectrum propagate to the 

FVC estimation, and this propagation process as well as its 

magnitude depends somewhat on the algorithms used/chosen. 

Information about the relationships between the propagated errors 

of different algorithms can be a basis of better algorithm selection. 

Obata and Yoshioka (Obata, 2010b) have derived the 

relationships between the propagated errors of different LMM-

based algorithms analytically under the two-endmember 

assumption. This study is to step forward our previous work: We 

try to use the analytical expressions to determine a factor which 

becomes an indicator for algorithm selection.  

Objective of this study is to propose a technique to compare the 

FVC retrieval algorithms in terms of propagated error. A criterion 

is derived analytically based on the derived expressions in our 

previous work. Below, we explain a derived factor of criterion 

after a brief theoretical background. Results of numerical 

experiments will be introduced to examine the derived criterion. 

 

 

2. BACKGROUND 

The LMM-based algorithms under the two-endmember 

assumption can be categorized into three on the 

conditions/constraints used in the algorithms. Details of the 

LMM-based algorithms and differences among those were 

discussed in (Obata, 2010a). In this study, we denote three 

algorithms, reflectance-based LMM, vegetation index-based 

LMM, and isoline-based LMM, as algorithm-1, -2, and -3, 

respectively. Errors in a reflectance spectrum propagated into 

FVC value by the three algorithms, represented by 1ε , 2ε , and 

3ε , are derived as a function of a target spectrum, a band-

correlated noise, endmember spectra, and choice of two-band 
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vegetation index (VI) used as conditions in algorithm-2 and -3 

(Obata, 2010b). Below, those factors are expressed simply as 

‘input data’. Relations between any two pair of the propagated 

errors ( 1ε , 2ε , and 3ε ) can be written by the fallowing 

expression (Obata, 2010b) as  
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where i
x  and j

y  are any pair of 1ε , 2ε , and 3ε . The 

coefficients jip ,  are defined by the input data. The formulations 

and coefficients for each algorithm had been explained precisely 

in our previous work (Obata, 2010b). The relationship by any pair 

of the propagated error ( 1ε , 2ε , and 3ε ) becomes an asymmetric 

ellipse as shown in Fig. 1. The length and slope of the major and 

minor axes in the ellipse depend on the input data. A certain point 

in the ellipse is determined by the direction of the band-correlated 

noise over the red-NIR reflectance subspace.  

 

 
 

Figure 1. Relationship of the propagated errors in FVC among 

LMM-based algorithms. The angle (the slope) of a major axis of 

the ellipse is denoted by θ . If the slope ( θtan ) is larger than one, 

the algorithm assigned for x -axis is superior to the algorithm 

for y -axis.  

 

3. METHOD 

Our focus is the derivation of the slope of the major axis in the 

asymmetric ellipse (Fig. 1) that indicates superiority in robustness 

between two algorithms. When the slope is larger than unity, 

average of y-value is relatively larger than that of x-value. It 

implies that the error assigned as y-axis tends to be larger than the 

one assigned as x-axis, meaning that that algorithm of x  is 

superior to that of y axis. It becomes vice versa when the slope 

is lower than unity.  The slope can be expressed by the angle θ  

as a function of the coefficients jip ,  in Eq. (1), as 
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where the coefficients 0,2p , 2,0p and 1,1p depend on the choices 

of the algorithms assigned for x  and y values. The definitions 

of those coefficients for each pair of the algorithms were 

summarized in (Obata, 2010b). Equation (2) approximates the 

slope of the major axis in the asymmetric ellipse, obtaining by 

neglecting the effect of higher order terms in Eq. (1). Note that 

those coefficients are mainly determined by the three factors of 

the input data: those are 1) target spectrum, 2) endmember spectra, 

and 3) choice of VI used in the algorithm as a 

condition/constraint. It means that, if a target field (target 

spectrum) and assumptions in the algorithms (endmember 

spectra) were fixed, superiority among the algorithms will be 

determined without intensive parameter studies.  

 

 

 

Figure 2. Target spectra in the red-NIR reflectance subspace. 

 

 

4. NUMERICAL VALIDATION 

In this section we examine our proposing technique to compare 

the algorithms based on the derived factor, Eq. (2). Since the 

factor depends on a target spectrum, the comparison was made 

for the various target spectra over the region in red-NIR 

reflectance space as shown in Fig. 2. We consider two sets of 

endmember spectra. One is a pair of (0.05, 0.4) and (0.1, 0.1) for 

the vegetation and non-vegetation endmember spectra, 

respectively, denoted as EM1. The other is a pair of (0.05, 0.4) 

and (0.3, 0.3) for the endmember spectra, denoted as EM2. We 

assumed NDVI, SAVI and EVI2 as a constraint in the algorithm. 

The magnitude of the noise spectrum in the reflectance is 

assumed to be 0.01 as a distance from a target spectrum.  

The variable θtan  is calculated for each target spectrum for 

the pairs of the LMM-based algorithms under two sets of 

endmember spectra. The variable θtan  is plotted in logarithmic 

scale as contour plot in red-NIR reflectance subspace (Figs. 3-7). 

The pair of the algorithm evaluated in the simulations is also 

denoted in each figure such as ‘A vs. B’. When )log(tanθ  is 

larger than zero ( θtan  is larger than one), algorithm-A is 



considered to be better than algorithm-B regarding the propagated 

noise in FVC estimation. Figure 3 is the comparison between 

algorithm-1 and 2, and algorithm-1 and 3 using three different 

VIs as a constraint with the endmember set of EM1. Figures 4 is 

the same comparison with the endmember set of EM2. Figures 5 

and 6 are the comparisons between algorithm-2 and 3 as Figs. 3 

and 4, respectively. Finally, Fig. 7 shows the comparison between 

algorithm-2 and 3 for both endmember cases. 

 

 
 

Figure 3. Contour plot of the slope, θtan  in log scale over red-

NIR reflectance space for evaluating the superiority between 

algorithm-1 and -2, and between algorithm-1 and -3 assuming 

EM1 as the endmember spectra.   

 

 

 
 

Figure 4. Contour plot of the slope, θtan  in log scale obtained 

by altering endmember spectra from EM1 to EM2 for the results 

in Fig. 3.   

 

 

Overall, these figures indicate strong dependency of θtan  on 

the target spectrum, the choice of endmember spectra, and VI 

used in the algorithm. In the figures, note that the contour line for 

log( θtan )=0 is the boundary along which the two algorithms (in 

comparison) would show nearly the same pattern and magnitude 

of the propagated error, meaning that the two algorithms would 

show no difference in terms of the propagated errors in FVC 

values. From upper left figure in Fig. 3, for example, log( θtan ) 

is greater than zero for lower value of red reflectance, meaning 

that 1ε  is mostly smaller than 2ε . For those target spectra, 

algorithm-2 is better than algorithm-1 regarding the propagated 

error.  

 

 
 

Figure 5. Contour plot of the slope, θtan  in log scale over red-

NIR reflectance space for evaluating the superiority among 

algorithm-2 using different VIs, and among algorithms-3 using 

different VIs based on EM1 as the endmember spectra.   

 

 

 
 

Figure 6. Contour plot of the slope, θtan  in log scale obtained 

by altering endmember spectra from EM1 to EM2 for the results 

in Fig. 5.   

 

 

Dependencies of target spectrum and two-band VI can be 

clearly seen, for example, in Fig. 3. Dependencies of endmember 

spectra on θ  can also be seen by comparing Figs. 3 and 4 (results 

obtained by altering EM1 to EM2). Especially, contour lines of 



)log(tanθ  in lower three (comparison between algorithm-1 and 

algorithm-3) in Fig. 3 align vertically, while, those in Fig. 4 align 

horizontally. From those figures, algorithm-1 would be more 

robust than algorithm-2 or –3 for the darker target. 

 

 

 
 

Figure 7. Contour plot of the slope, θtan  in log scale over red-

NIR reflectance space for evaluation of the superiority between 

algorithm-2 and -3, using the same two-band VI assuming EM1 

(upper three) and EM2 (lower three).  

 

 

Results of )log(tanθ  for algorithm-2 or -3 using different type 

of VI are shown in Figs. 5 (using EM1) and 6 (using EM2). 

Endmember effect is clearly observed in results of algorithm-3. 

On the other hand, the variation of endmember spectrum has 

small influence on the comparison within algorithm-2. Those 

results might infer the fact that FVC computed by algorithm-3 

depends relatively larger on endmember spectra comparing to 

that by algorithm-2. Magnitude of θ is also different among the 

pairs of VI, although )log(tanθ -isoline (contour) shows similar 

pattern for those cases with only exception of the upper right plot 

in Figs. 5 and 6.  

Figure 7 shows the comparison between algorithm-2 and -3 

using the same VI with two sets of endmember spectra. Upper 

three are for EM1, and lower three are for EM2. All the patters of 

)log(tanθ -contour are similar, indicating the similarity in their 

behaviors against the error. Endmember spectra (non-vegetation) 

has small influence on the contour pattern. In addition, from the 

contour pattern, when the VI value of the target spectrum is lower, 

algorithm-2 is more robust against the errors. When the VI value 

becomes higher, it turns out that algorithm-3 becomes a better 

choice.  

 

 

5. REMARKS 

We introduced a technique to compare the FVC retrieval 

algorithms regarding the robustness against error in a reflectance 

spectrum which is eventually propagated into the FVC value. We 

derived a factor as an indicator of the robustness, which is 

defined by endmember spectra, coefficients of the VI model 

equation assumed in the algorithm, and reflectance spectrum of a 

target pixel. Once an average target spectrum endmember spectra 

are fixed, those algorithm can be compared deterministically. 

Thus, based on this factor, we can avoid statistical analysis by 

conducting an intensive parameter study with numerical models 

and field data. 

In this study we limit both the number of endmember spectra 

and the number of bands into two to facilitate the analytical 

approach. Although those assumptions may be unrealistic in 

practical application, the introduced technique would help to 

understand fundamental differences, which provides rich 

information for selecting the optimum algorithm for individual 

target field.  
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