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Abstract - According to Global Climate Models (GCMs) the 

occurrence of extreme events of precipitation will be more 

frequent in the future. Therefore, important challenges 

arise regarding climate variability, which are mainly 

related to the understanding of ecosystem responses to 

changes in precipitation patterns.  Previous studies have 

found that Above-ground Net Primary Productivity 

(ANPP) was positively related to increases in annual 

precipitation and this relation may converge across biomes 

during dry years.  One challenge in studying this ecosystem 

response at the continental scale is the lack of ANPP field 

measurements over extended areas.  In this study, the 

MODIS EVI was utilized as a surrogate for ANPP and 

combined with precipitation datasets from twelve different 

experimental sites across the United States over a 10-year 

period.  Results from this analysis confirmed that 

integrated-EVI for different biomes converged toward 

common precipitation use efficiency during water-limited 

periods and may be a viable surrogate for ANPP 

measurements for further ecological research. 
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1. INTRODUCTION 

 

One of the main components in the carbon cycle is Net Primary 

Production (NPP), which is defined as the annual biomass 

increment of both above- and below-ground components after 

accounting for autotrophic respiration (Saugier and Mooney, 

2001).  For several years, ecologists have been widely 

interested in studying NPP across different biomes and scales 

by using traditional (Lieth, 1973)  and modeling approaches 

supported by remote sensing (Field et al., 1995; Paruelo et al., 

1997;  Running et al., 2004).  This interest on NPP relies on its 

influence over other ecosystem processes. Consequently, 

important challenges arise regarding climate variability, which 

are mainly related to the understanding of ecosystem responses 

to changes in precipitation patterns and how to assess the 

impact across diverse biomes.  

As part of this assessment process, previous studies report that 

Above-ground Net Primary Productivity (ANPP) is positively 

related to greater Mean Annual Precipitation (MAP) (Lieth, 

1973; Knapp and Smith, 2001; Huxman et al., 2004). 
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 One of the major challenges in studying this ecosystem 

response at the continental scale is the lack of ANPP field 

measurements over extended areas with suitable temporal 

variability (Clark et al., 2001).  Therefore, the capability of 

translating spectral data into biological estimations with 

Vegetation Indexes (VIs) represents a key factor in the use of 

satellite data to estimate values of variables like ANPP across 

larger areas and over extended periods of time.  The 

Normalized Difference Vegetation Index (NDVI) has been 

used extensively to monitor vegetation from satellite by using 

information from the red (high absorption) and near-Infrared 

wavelengths (high reflectance) (Tucker, 1979).    

In previous research (Box et al., 1989; Paruelo et al., 1997; 

Fang et al., 2001)  the NDVI as an estimator of productivity 

exhibited strong relationships (NDVI-Productivity) with a 

higher variability in both wet and dry regions.  One of the first 

efforts in using an integration of NDVI was presented in a 

study by Goward et al. (1985) where they integrated 3-week 

composites of NDVI (∑NDVI) and concluded that annually 

integrated patterns of NDVI measurements corresponded to 

known continental patterns of NPP. The accuracy of satellite 

data as estimator of biological parameters represents a key step 

in increasing the use and value of satellite information (Paruelo 

et al., 1997).  Therefore, it is necessary that models and 

techniques using remote sensing data continue to improve 

through experimentation.  As Knapp and Smith (2001) 

suggested in their response to Fang et al. (2001) regarding the 

use of NDVI to quantify NPP, where they clarify that it is 

important that the use of NDVI demonstrate that the inter-

annual variability of  the vegetation index (NDVI) is sensitive 

enough to detect changes in NPP across a range of biomes.  

The Enhanced Vegetation Index (EVI) has been widely used 

for environmental studies. It was developed to optimize the 

vegetation signal with improved sensitivity in high biomass 

regions and improved vegetation monitoring through a de-

coupling of the canopy background signal and a reduction in 

atmosphere influences (Huete, 1988; Liu and Huete, 1995).  

The aim of this study was to test the suitability of the Enhanced 

Vegetation Index (EVI) as a surrogate for NPP by analyzing 

the convergence in dry years across different precipitation 

regimes.   

2.  DATA AND METHODS 

2.1 Precipitation data  



The stations involved in this project were selected from the 

available network of experimental watersheds across the 

conterminous United States (Fig. 1). 
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Figure 1.  Stations and mean total precipitation across the 

conterminous United States.  See table A. 

These sites were reviewed by Moran et al. (2008) as part of a 

study on the Long-Term Data Collection at USDA for studies 

in ecohydrology making emphasis on the importance of long-

term datasets, spanning more than 20 years, as well as the need 

for data records across a wide range of ecosystems. 

Table A.  Locations of the experimental watersheds. The 

geographic coordinates correspond to the centroid of an 

homogenous land cover type for at least an area of 2x2 km and 

MAP from 2000-2009. 

Site Code MAP 

(mm) 

Latitude Longitude 

Caspar Creek CC 1108.9 39.337 -123.748 

Southern Plains SP 611.7 36.614 -99.576 

Little Washita  LW 744.7 34.918 -97.956 

Reynolds Creek RC 249.2 43.146 -116.736 

Walnut Gulch  WG 278.3 31.736 -109.937 

Santa Rita Range SR 318.6 31.846 -110.839 

Goodwater Creek GW 1050.9 39.270 -92.121 

Little River LR 1079.6 31.537 -83.626 

Jornada JN 242.5 32.588 -106.844 

Mahantango MH 1129.6 40.730 -76.591 

Bent Creek  BC 1299.2 35.500 -82.624 

CutFoot CF 629.1 47.426 -94.014 

Luquillo LU 3678.9 18.313 -65.742 

 

Precipitation data sets were provided by scientists responsible 

for data collection and research at each one of the stations. Our 

main goal in the selection of these stations was to obtain 

reliable precipitation data with a representative homogenous 

vegetation type in at least 2x2 km.   

 

2. 2 MODIS EVI data set  

 

The satellite product used for this work was MODIS EVI 

(MOD13Q1) with 16-day and 250-m temporal and spatial 

resolutions, respectively. By using the coordinates (centroid) of 

each station, it was possible to acquire the corresponding 

MODIS tiles of the MOD13Q1 product for the 10-year period 

(2000-2009). A 9x9 pixel (~2.25x2.25km area) window size 

from EVI product was used, where each pixel represented 

~250m on the ground. We obtained 23 image-files per year 

from 2000 through 2009 for a total of 230 files for each one of 

the 13 locations.  We applied a quality assurance (QA) control 

scheme for  each pixel in order to select only those pixels that 

met our criteria (no mixed-clouds, low-average aerosols, only 

land).   

2.3 Time series analysis 

For MODIS EVI time series analysis we used the TimeSat 

package (Jönsson and Eklundh, 2004).  The main goal in using 

TimeSat was to standardize the gap-filling and smoothing of 

the time series data and obtain the start/end of the growing 

season, to enable us to acquire more accurate results of the 

iEVI (Integrated-EVI) values. One of the main features we 

used from this package was the Savitzky-Golay filtering 

algorithm (Golay and Savitzky, 1964).  The main advantage of 

this method is that it tends to preserve features of the 

distribution such as relative maxima, minima and width, which 

are usually 'flattened' by other adjacent averaging techniques 

(Jönsson and Eklundh, 2004).  It replaces each data value yi, 

i=1,...,n by a linear combination of nearby values in a window.   

 

 

 
 

 

where the weights are cj = 1/(2n + 1), and the data value yi is 

replaced by the average of the values in the window. For each 

data value yi, i = 1, 2, . . . , n a quadratic polynomial is fitted as 

f (t) = c1 +c2t+c3t
2 to all 2n+1 points in the moving window 

and replace the value yi with the value of the polynomial at 

position ti (Jönsson and Eklundh, 2004).  Thus, for our purpose 

this capability was important because we used the integrated 

portion of EVI signature extracted from the growing season of 

each year, as our surrogated NPP, which is during this period of 

time where usually satellites get more atmospheric interference, 

mainly because of rainfall events.  In Fig. 2 we illustrate the 

components of the resulting smoothed time series from 

TimeSat. 
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Figure 2.  An example of the output obtained from TimeSat. (a) 

Small integral, (b) large integral, (c) base value, (d) Start of 

season, (e) end of season, (f) length of season, (g) amplitude. 

 

For the case of the evergreen sites (CC, MH, BC, LR, and LU) 

where there is no dormant season and productivity occurs the 

whole year, we integrated the EVI over the entire year.  Using 

TimeSat, we turned off the start/end of season parameters by 

choosing values close to 0 for the values of season start/stop. 



3. RESULTS 

 

In this work we tested the use of MODIS EVI dataset as a 

proxy for ANPP measurements by analyzing responses to 

precipitation variability. The comparison of totals and mean 

annuals is commonly applied by using linear regression models 

(Fang et al., 2001; Knapp and Smith, 2001)  to evaluate across-

sites and gradients studies. Since ecological implications in 

relation to the sensitivity of ecosystems to climate variability 

along with other environmental resources have been 

extensively reported, we tested the significance of our results 

on some of the approaches used by Knapp and Smith (2001)  

for testing interannual variability as well as those used in 

Huxman et al. (2004)  to show the convergence of ecosystems 

on water-limited conditions using the relationship of MAP and 

ANPP.   The Fig. 3 (a) shows the mean values of the integrated 

EVI and (b) the MAP (Mean Annual Precipitation) with the 

standard error (+SE) for the low, medium, and high 

precipitation regimes of the 13 sites used in this study.  
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Figure 3.  Mean annual values (2000-2009) for each site at low, 

medium, and high precipitation regime with ±SE. (a) Mean 

annual integrated EVI, (b) Mean Annual Precipitation (MAP). 

 

In Fig. 4, the annual values of precipitation and iEVI across all 

sites are fitted into an exponential rise to maximum model, 

identifying the precipitation regimes along with the higher 

productivity values as similarly reported by Huxman et al. 

(2004) at the more mesic sites, where the lowest and even 

negative slopes occurred.  We compared the results across sites 

and years from the fitted model and a regression coefficient of 

r2=0.85(P<0.0001) was obtained. 
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Figure 4.  Exponential rise to maximum model between annual 

integrated EVI values and total annual precipitation of all the 

sites used in this study. 

 

Our next step was the use of average annuals as presented in 

several studies where ANPP – PPT relationship has been 

studied (Paruelo et al., 1997; Knapp and Smith, 2001; Huxman 

et al., 2004; Bai et al., 2008).  By plotting average annuals from 

EVI and PPT our results strongly agree with those presented by 

Knapp and Smith (2001) where their cross-site study 

demonstrated that at continental scales, ANPP was strongly 

correlated with mean annual precipitation as is similarly shown 

in Fig 5 (a) (r2=0.74).  Fig. 5 (b) shows the relationship 

between the magnitude of iEVI pulses (maxima) and declines 

(minima) for all the sites, with very similar results presented by 

Knapp and Smith (2001). 
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Figure 5.  (a) Relationship between average annual 

precipitation and average annual integrated EVI, and (b) EVI 

pulses (maxima) and declines (minima) for the 13 sites. 

In addition, we compared the minima values of precipitation 

(driest year) for each one of the sites and correlated them with 

values of EVI in order to compare with the results from 

Huxman et al. (2004) to determine  if the convergence in those 

periods with water-limited conditions prevailed. Using the 

same approach, a linear regression over the driest years was 

obtained and is depicted in Fig. 6 (a), the results show a good 

correlation (r2=0.6) for the convergence of driest years,  

however, in (b) when the Luquillo site is excluded, our 

correlation coefficient is  r2=0.94 (P<0.0001).  
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Figure 6.  Linear regressions (bold line) of the closed circles, 

corresponding to the minima in precipitation of each site. (a) 

the regression over the driest year for each of the 13 sites,(b)  

the regression over the minima excluding Luquillo watershed.  

 

The convergence of the vegetation productivity exhibited over 

the driest periods of time across this multi-site experiment 

strongly supports the methodology of using EVI as a surrogate 

for estimation of ANPP followed in this work. 

 

4. DISCUSSION AND CONCLUSION 

 

Research in ecosystems monitoring using remote sensing data 

has increased in the recent years because of the high demand 

for spatial and temporal measurements that can produce inputs 

for climate modeling. For this study, the use of integrated EVI 



values as a proxy for ANPP measurements was the main goal.  

The results from our analysis lead us to continue in a similar 

path, where the estimation of a biophysical variable like ANPP 

can be strongly supported by the use of satellite data.  

According to Weltzin et al. (2003) there is a need for 

alternative approaches that can be used to extrapolate the 

results of isolated experiments that includes those cross-site 

comparisons or gradient studies.  Thus, values of iEVI allowed 

us to test this extensively studied relationship between ANPP 

and precipitation across different biomes as an important step 

in finding new ways to derive ANPP estimations using satellite 

data.  

As part of our approach, in Fig. 6 (a-b), the convergence across 

sites during the driest years is depicted using the results from 

this study. However, it is important to consider the issues 

related with the high variability found in the tropical forest site 

(LU), Fig. 6 (a), which can lead to dispersion of the model. The 

methods used to test our results were taken from previous 

research (Fang et al., 2001; Knapp and Smith, 2001; Huxman et 

al., 2004) where direct-field measurements of ANPP were used.  

Our results support hypotheses stated by Knapp and Smith 

(2001) and Huxman et al. (2004), the use of EVI integrated 

provide a real opportunity to continue exploring across biomes 

and at different spatio-temporal scales.  

The main limitation found in our approach for the use of 

remote sensing data sets is the lack of good quality 

measurements mainly because of atmospheric interferences, 

mainly in those wet regions as the tropics, as we tested for the 

Luquillo site.  Therefore, in order to counteract this constraint 

and be able to follow a similar methodology as the one 

presented in this study, it will be necessary to make emphasis 

in the time series processing in order to produce relevant 

estimations of the iEVI values without any bias or dispersion 

induced by noise in the time series data. 
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