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Abstract – Unmanned Aerial Vehicles (UAVs) are an 

exciting new remote sensing tool capable of acquiring high 

resolution spatial data. This study has developed a UAV 

capable of collecting hyper resolution visible, multispectral 

and thermal imagery for application to Precision Viticulture 

(PV). Traditional modes of data collection are not well 

suited to the detection of subtle but important changes in 

vineyard structure given low temporal and spatial 

resolutions. Mapping with UAVs has the potential to 

provide imagery at an unprecedented spatial and temporal 

resolution. We present a technical description of our UAV 

and its payload options including visible imagery which is 

processed using feature matching and photogrammetric 

techniques to create Digital Surface Models (DSMs) of the 

vineyards. A thermal infrared camera is used to map soil 

moisture enabling assessment of irrigation efficiency, and a 

six-band multispectral camera enables the calculation of 

vegetation indices that relate to vineyard vigour and health. 
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1. INTRODUCTION 

 

Historically, Unmanned Aerial Vehicles (UAVs) have primarily 

been used for military applications. More recently, the use of 

UAVs in the civilian domain as remote sensing tools presents 

new and exciting opportunities. Improvements in the 

availability of accurate and miniature Global Positioning 

System (GPS) units and Inertial Measurement Units (IMUs), 

along with the availability of quality off the shelf consumer 

grade digital cameras has resulted in an increased use of civilian 

UAVs (Nebikera et al., 2008). 

 

The highest spatial resolution data available from conventional 

platforms such as satellites and manned aircraft is typically in 

the range of 20-50 cm/pixel. UAVs are capable of flying much 

lower and hence can collect imagery at a much higher resolution 

(Scaioni et al., 2009; Hunt et al., 2010), often at a sub-decimetre 

resolution, even as detailed as 1 cm/pixel. 

 

The temporal resolution of conventional systems is limited by 

the availability of aircraft platforms and orbit coverage patterns 

of satellites. For the purpose of monitoring highly dynamic 

vegetation such as that within vineyards, satellite sensors are 

very much limited due to unfavourable re-visit times 

(Berni et al., 2009).  

 

Precision Viticulture (PV) is defined as monitoring and 

managing spatial variations in physical, chemical, biological 

variables related to productivity of vineyards (Hall et al., 2002). 

Extensive research has been undertaken to determine if 

traditional sources of remote sensing data (satellite and aerial 

photography imagery) can be used to assist with PV, 

Hall (2008) provides one example. Much of this research has 

been based around calculating vegetation indices such as Plant 

Cell Density (PCD) and Normalised Difference Vegetation 

Index (NDVI), and subsequently relating these to 

bio-geophysical properties of the vines such as Leaf Area Index 

(LAI). 

 

Proffitt and Pearse, (2004) used ground truth data to 

demonstrate that PCD provides a good indication of vine vigour 

that correlates well to yield and wine quality. Berni et al.(2009) 

discovered that the Photochemical Reflective Index is a much 

better indication of plant water stress than NDVI when looking 

at orchard crops such peaches and olives. 

 

However, vineyards are not a homogeneous crop and data from 

traditional aerial photography or high resolution satellite sensors 

are not able to accurately differentiate between individual vines 

and the between row vegetation. This dictates that at the edges 

of the vines, pixels will exhibit the reflectance properties of 

both the vine itself and the adjacent vegetation. Hyper 

resolution UAV imagery of vineyards does not have this 

limitation, hence there is an exciting potential for development 

of a UAV system to map vineyards and thus assist with PV. 

 

This paper describes our UAV platform and the sensors that are 

used to collect data. We demonstrate the processing algorithms 

that are used to process and ortho-rectify data from each of our 

sensor types. Some vegetation indices will then be examined to 

qualitatively assess their ability to differentiate differences 

within vineyard imagery. 

 
2. METHODS 

 

Our UAV is based on the Oktokopter platform 

(Mikrokopter, 2011), a multi-rotor electric powered system 

purpose designed for aerial photography (Figure 1). The 

Oktokopter has been fitted with a stabilised camera mount to 

which we mount our sensor systems. The Oktokopter has a 

payload limit of approximately one kilogram, hence we are 

limited to flying each of our sensors individually. 

 

 

 
Figure 1.  Oktokopter fitted with multispectral camera. 

 

 

A Canon 550D digital SLR camera is used to capture visible 

imagery which is then processed with feature matching and 

photogrammetric software to create Digital Surface Models 

(DSMs). The same camera mount has been adapted to carry a 

Tetracam mini-MCA (Multi Camera Array) (Tetracam, 2011) 

multispectral camera that operates in six bands set by fitting 

specific filters. This imagery is used to examine vegetation 



 

reflectance in critical wavelengths allowing the calculation of 

vegetation indices. Finally, a FLIR (FLIR, 2011) Thermal 

Infrared (TIR) camera can be attached to the Oktokopter to 

measure surface temperature. 

 

The Oktokopter has an onboard navigation system based on a 

GPS receiver and an IMU. A defined set of waypoints can be 

pre-programmed to form a set flight path. Flight planning 

software has been developed that calculates the spacing and 

layout of waypoints to acquire data over a region of interest at a 

nominated image scale (Figure 2). Imagery is typically acquired 

at the maximum rate allowed on the device, thereby providing 

redundancy to account for elimination of imagery with 

excessive tilt, motion blur or bad exposure. 

 

 

 
Figure 2.  Flight planning software. Flight grid is approximately 

200 x 100 m which represents a single flight sequence 

(5 mins flight duration)  

 

 

3. TEST CASES 

 

We have tested our UAV system at the Frogmore Creek 

vineyard near Richmond in southern Tasmania. This is a large 

vineyard containing many blocks of vines of different varieties. 

We have identified one block of particular interest for use in 

this study – it consists of highly variable topography that affects 

the surface moisture and thus is one of the influences the vigour 

of the vines. 

 

A significant challenge associated with UAV imagery is the 

large volume of data that is produced; to deal with this 

automated processing systems are required. We have developed 

a semi-automated system to ortho-rectify the imagery with or 

without Ground Control Points (GCPs). 

 

To ortho-rectify the imagery we initially manually select the 

most appropriate photos from the dataset collected. The selected 

images are processed with the Bundler software (Snavely, 2010) 

which uses the SIFT algorithm (Lowe, 2005) to detect matching 

features across the images. 

 

Bundler then runs a bundle block adjustment to align the images 

within its own coordinate system. An output file is generated 

that lists the calculated position of each exposure station in the 

bundler coordinate system along with the location of each 

matched feature in both the bundler and original image based 

coordinate system. A point cloud is also produced in which the 

x, y, z position (in the bundler coordinate system) of each 

matched feature is listed along with its RGB colour from the 

original imagery. 

 

These bundler point clouds are sparse, however, denser point 

clouds but can be generated by use of PMVS2 software 

(Furukawa and Ponce, 2009) to produce point clouds containing 

many millions of points. (Figures 3 and 4)  

 

 

 
Figure 3.  Vineyard point cloud, before vine canopy growth 

 

 

 
Figure 4.  Vineyard point cloud, vines with full canopy 

 

 

If GCPs are present in the imagery we use a simple filtering 

algorithm (based on thresholding to identify the bright orange 

colour of the control points) to extract the location of the GCPs 

from the point cloud and subsequently match them to the 

locations measured in situ with survey-grade, carrier phase 

differential GPS equipment. This provides a list of x, y, z points 

in the bundler coordinate system with a corresponding northing, 

easting and elevation coordinate in a real world coordinate 

system, in our case the Map Grid of Australia (MGA). The 

point cloud is transformed into MGA following the solution for 

Helmert transformation parameters (three translations, three 

rotations and one scale parameter) using a least squares 

algorithm. 

 

When no GCPs are present in the image the camera locations in 

the Bundler output file are matched to the onboard GPS logs 

from the Oktokopter based on the time at which the image was 

captured. This again gives us a list of coordinates matched to 

their real world equivalents allowing Helmert transformation 

parameters to be determined. This technique is presently limited 

to the inaccuracy of the onboard GPS unit that is a navigation 

grade single frequency GPS device. 

 



 

Initial validation of the point cloud transformed with the aid of 

GCPs yields an RMS error of approximately 10 cm. Without 

GCPs, the RMS increases to ~2 m given the quality of the GPS 

unit on board. 

 

The calculated Helmert parameters can also be applied to the 

Bundler output file to create control points for each image. That 

is, for each matched feature in an image we have an x, y, z 

coordinate which can be transformed into a northing, easting 

and elevation coordinate. For a given matched feature, we also 

have an image coordinate, this means there is now a list of 

control points for each image (usually in the order of thousands) 

for which we have real world 3D coordinates (Figure 5) 

 

 

 
Figure 5.  Control points from bundler shown in red.  

 

 

These control points can now be used with a rubber sheet 

transformation to orthorectify each image. Once all images are 

orthorectified it is a simple task to mosaic them together with a 

geo-referenced based stitching software such as ENVI 

(ITTVIS, 2011). (Figure 6) 

 

 

 
Figure 6.  Example ortho-mosaic of visible vineyard imagery 

made up from 48 images. Area is approximately 200x150m 

 

 

Further data processing algorithms have been developed to 

convert the raw data collected by the multispectral and TIR 

camera into usable imagery. The TIR images indicate the soil 

and surface temperature which is generally related to moisture 

content. Figure 7 provides a TIR example that highlights a 

temperature gradient up to the bottom right of the image where 

temperatures are higher than in other areas. Inspection of the 

study region shows that this region is less vigorous (both vines 

and between row vegetation), hence more soil is exposed and 

the ground is warmer. 

 

 

 

 
20°C               Temperature              40°C 

Figure 7.  Example TIR image of vineyard 

 

 

Data from the multispectral camera can be viewed as a false 

colour composite. We use this to generate a set of “quicklooks” 

allowing us to find regions of specific interest. Figure 8 is of the 

same area as the TIR image and demonstrates that the less 

vigorous area is also well defined in the multispectral imagery. 

 

 

 
Figure 8.  False colour composite of vineyard area where 

Red = 800 nm, Green=670 nm and Blue=550 nm 

 

 

A commonly used vegetation index is NDVI which provides a 

general measure of vegetation vigour and biomass. NDVI is a 

ratio and has the advantage that an object under shadow will 

reflect light reduced by the same amount across the entire 

spectrum, thus it is not severely affected by shadows in the 

image (Hall, 2002). NDVI is commonly used in PV 

applications, for example, Lamb et al. (2001) found a 

correlation between image derived NDVI values and subsequent 

grape yields. Figure 9 displays the NDVI generated from the 

multispectral image display in Figure 8, again the less vigorous 

area is well defined. 
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Figure 9.  NDVI for same section of the vineyard 

 

 

Another commonly used vegetation index is the Photochemical 

Reflectance Index (PRI) that is an indicator of chlorophyll 

fluorescence which changes under water stress conditions 

(Suárez et al., 2008). Berni et al (2009) demonstrated that PRI 

generated from UAV multispectral imagery could be used for 

water stress detection. Figure 10 shows how PRI can be used to 

differentiate between the vines and the background surface. It is 

possible to see that the vines in the upper left are vigorous and 

leafy (i.e. brighter in the PRI image) whilst in the bottom right 

there are far fewer leaves and areas where you can see the trellis 

wires in the absence of any significant vines. 

 

 

 
Figure 10.  PRI for zoomed in section of the vineyard 

 

 

4. CONCLUSIONS 

These initial results presented in this study further highlight the 

potential for multi-sensor UAV systems in the application of 

PV. The versatility of the UAV system is further enhanced by 

the fact that these data sets can be collected “on-demand”, 

providing unprecedented temporal resolution that spans the 

critical times in the crop growing season. 

 

The imagery produced from UAV collected data in this study 

has a spatial resolution up to 1 cm/pixel. The accuracy of the 

ortho-mosaics produced depends on the use of GCPs, however, 

a dual frequency survey grade onboard GPS has the potential to 

eliminate the need for GCPs and thus greatly improve the 

efficiency of the UAV field to finish system. 

 

Further studies will be undertaken to determine how these 

datasets can best be used by vineyard managers to implement 

decisions that improve operational efficiency, productivity and 

sustainability.  
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