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ABSTRACT: Statistical analyses of the relationship between visible and near-infrared (VNIR) spectra and soil parameters usually 
require the normal distribution of wavelength variables. Most previous studies examined only the distribution of soil parameters, 
while the distribution of each VNIR spectra wavelength was ignored. Moreover, how the sample preparation process and spectral 
pre-processing procedure influence the distribution of each spectral wavelength has seldom been reported with data collected at a 
regional scale. With 71 soil samples collected from the Le'an River floodplain, China, our study analyzed the distribution of spectral 
wavelength variables in the VNIR region (350–2500 nm). More specifically, by means of the Lilliefors normality test plot and the 
kurtosis and skewness curve plot proposed by this study, we aimed to (1) test the normality of each wavelength using the Lilliefors 
normality test; (2) compare the kurtosis and skewness of wavelength variables between soil samples, with and without preparations. 
Results show that most wavelength variables from differently transformed spectra are not normally distributed. Soil sample 
preparation processes such as air-drying, grinding, and 0.2 mm sieving, can significantly change the distribution of wavelength 
variables. Thus, statistical methods with normality assumption in the wavelength variables would not be appropriate for data of this 
kind. 
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1. INTRODUCTION 

Visible and near-infrared (VNIR) spectra are now being used by 
more researchers than ever before for characterizing a variety of 
soil parameters (e.g., organic matter, moisture, and heavy metal 
content) (Gomez et al., 2008; Viscarra Rossel and Behrens, 
2010; Viscarra Rossel et al., 2009). In the study of VNIR-based 
soil constituents estimation, the VNIR spectral wavelengths 
(e.g., 350–2500 nm) act as predictor variables, and the soil 
parameters are predicted by a statistical model (e.g., a PLS 
model). Two aspects can largely influence the VNIR-based 
determination of soil parameters. One is the spectra 
transformation/pre-processing technique, while the other is soil 
sample preparation (Stenberg, 2010).  
 
The spectra transformation/pre-processing technique has been 
considered to be an integral part of chemometrics modelling. Its 
application allowed the baseline shift, light scattering and non-
linearities to be largely eliminated (Rinnan et al., 2009; Wold et 
al., 2001a; Wold et al., 2001b). Some of the most commonly 
used transformation/pre-processing techniques include 
absorbance (log [1/Reflectance]), Savitzky-Golay smoothing, 
multiplicative scatter correction, standard normal variate (SNV), 
continuum removal (CR), and the first derivative. In practice, a 
variety of spectral transformation/pre-processing techniques and 
their combinations are used to give a better overall model 
(Mouazen et al., 2010; Viscarra Rossel and Behrens, 2010; Wu 
et al., 2009). To date, few studies, however, have investigated 
the data distribution of each wavelength before/after spectral 
transformation/pre-processing, despite the important role that 
this plays in the correlation analysis between spectra and soil 
parameters, as well as in statistical modelling (Bellon-Maurel et 
al., 2010). Moreover, the data distribution analysis of 
wavelength variables could be helpful for understanding how 
the spectral transformation/pre-processing technique influences 
the distribution of spectral wavelengths.  
 
Soil sample preparation, such as grinding, sieving and air/oven-
drying processes can largely change the reflectance of a soil 
sample. Some researchers have compared the spectral curves of 
soil samples with different surface roughness and moisture 

conditions (Wu et al., 2009). Few of them, however, have 
investigated the distribution changes of each spectral 
wavelength variable before and after sample preparation. The 
investigation of such changes could be helpful for model 
developing and knowledge discovery, as the VNIR spectra are 
known to carry comprehensive information of both chemical 
and physical phenomena. 
 
In addition, the recent trend of incorporating the VNIR spectra 
in the mapping of soil properties using methods from the 
kriging family also highlights the needs for normality 
examination of VNIR spectral wavelengths (Bilgili et al., 2011; 
Ge et al., 2007). 
 
Despite the importance of data structure visualization in data 
mining (Daszykowski et al., 2003), traditional statistical 
analyses such as histogram of variables or QQ plots for 
normality analyses cannot simultaneously present the 
distribution of thousands of wavelength variables. To tackle 
such difficulties, two kinds of plots for the data distribution 
analysis of VNIR spectra are proposed: (1) a Lilliefor normality 
test plot of each wavelength variable, and (2) a kurtosis and 
skewness curve plot of each wavelength variable. As the 
distribution of wavelength variable is sample dependent, this 
study limited its scope to 71 soil samples collected from the 
Le'an River floodplain of China. More specifically, our study 
aimed to (1) test the normality of each wavelength variable 
using the Lilliefors normality test; (2) compare the kurtosis and 
skewness of wavelength variability between soil samples with 
and without preparations. 
 

2. MATERIALS AND METHODS 

2.1 Soil sample collection and preparation 

A total of 71 top layer (0–15 cm) soil samples were collected 
from the Le'an River flood plain, China. The fieldwork lasted 
from 29 October 2009 to 1 November 2009. This data set 
includes 45 samples from agricultural land, 11 from forest land, 
7 from pasture and 8 from river bench, ensuring a representative 
sample set of the Le'an River floodplain.  



 

 

 
The soil samples were first air-dried in the laboratory at 20–25° 
for two days. The dried soil samples were then gently crushed in 
a porcelain mortar to break up large aggregates, and sieved 
using a 0.2 mm stainless steel sieve. It was assumed that the 
differences between samples, with and without pretreatment, 
only existed in soil particle size and water content. 
 
2.2 VNIR spectra analyses 

The reflectance of the soil samples was measured twice: once 
before sample preparation, generating a data set named Ori-01; 
and the other data set, Ori-02, was generated after the air-drying, 
grinding and 0.02 mm sieving process. 
 
An ASD FieldSpec3 portable spectral radiometer with a 
wavelength of 350–2500 nm was used to measure the spectral 
reflectance of the soil samples. The sampling interval and 
spectral resolution were 1.4 nm and 3 nm for the 350–1000 nm 
range, and 2 nm and 10 nm for the 1000–2500 nm range 
(http://www.asdi.com). The spectra scanning procedure was 
carried out in a dark room at night, minimizing the influence of 
external light. A white light source matched with the 
spectroradiometer was used with a 45° incident angle. A soil 
sample of around 500 g, spanning a diameter of approximately 
20 cm, was scanned by the spectroradiometer, with a distance of 
12 cm from probe to sample surface and a zenith angle of 90°. 
 
The spectral radiance over a standardized white Spectralon® 
panel was measured every ten samples. Then the spectral 
radiance over the soil was scanned (10 internal scans of 100 ms 
each). By dividing the radiance over the Spectralon® panel, the 
reflectance spectra of each soil sample was automatically 
derived and displayed on the screen of the laptop. Data were 
exported in ASCII format for further analyses.  
 
2.3 Spectra pre-processing 

This study applied seven spectra pre-processing/transformation 
techniques over both the Ori-01 and Ori-02 data sets. These 
were first and second derivative (Savitzky-Golay derivation 
with 11 points and a second-order polynomial), absorbance (log 
[1/reflectance]), first and second derivative of absorbance, 
standard normal variate (SNV), and continuum removal (CR). 
The CR technique has been widely used in VNIR spectroscopy 
for its ability to isolate particular absorption features in diffuse 
reflectance spectra (Gomez et al., 2008; Viscarra Rossel et al., 
2009). Further details of these spectra transformations were 
reviewed by Rinnan (Reimann et al., 2001). The 
Unscrambler®X (http://www.camo.com/) was used to perform 
these spectra transformations, except for the CR process, which 
was calculated using ENVI Version 4.5 (www.ittvis.com). The 
algorithms of these pre-processing techniques were not listed 
for their wide applications and supports from a variety of 
software. Sixteen sets of spectra were finally available for 
distribution analysis, including the Ori-01 and Ori-02 data sets.  
 
2.4 Distribution analyses 

Methods for characterizing the distribution of a random variable 
can be divided into two categories: graphical methods, like 
histograms and the Q-Q plot; and numerical methods, such as 
skewness, kurtosis and the Lilliefors test of normality. 
Graphical methods usually compare the distribution of a 
random variable to a theoretical one by means of a bar plot (e.g. 
histogram) or a dot plot (e.g. Q-Q plot), both of which are 

visually appealing. Numerical methods apply descriptive 
statistics (e.g. skewness) or statistical tests (e.g. the Lilliefors 
normality test) to the variables. These methods perform well 
when the number of variables for analyses is limited. However, 
they can either fail to present the results in a simple way or be 
inefficient in the case that variables numbering more than 
several thousand need to be presented. Therefore, one aim of 
this study is to find new solutions to overcome such difficulties. 
Two kinds of plots for the data distribution analysis of VNIR 
spectra are proposed. They are the kurtosis and skewness curve 
plot and the Lilliefors normality test plot of each wavelength. 
 
2.4.1 Lilliefors normality test plot: The Lilliefors normality 
test is a kind of Kolmogorov-Smirnov test for normality when 
the mean and variance are unknown. There are two steps to 
draw a Lilliefors normality test plot. The first step is to test the 
normality of each wavelength variables. The second is to plot 
the results (y axis) over the wavelengths (x axis). This study 
utilizes the "lillietest" function in Matlab to test the normality of 
a wavelength variable, with 95% confidence interval. The 
results returned by the function can be either "zero" or "one". 
"Zero" means that the null hypothesis "the data are normally 
distributed", cannot be rejected at the 5% significance level, 
while "one" indicates that the null hypothesis can be rejected at 
the 5% level. A Matlab program was written to test the 
normality of each wavelength variable. The results (zero or one) 
were stored in a vector and afterwards plotted versus the 
wavelengths (350–2500 nm) using the "bar" function in 
Matlab® (R2008a). 
 
2.4.2 Kurtosis and skewness curve plot: Kurtosis, based on 
the fourth central moment, is known for its ability to measures 
the thinness of tails or “peakedness” of a probability 
distribution. If kurtosis of a random variable is less than three, 
the distribution has thicker tails and a lower peak compared to a 
normal distribution. Kurtosis of larger than three indicates a 
higher peak and thinner tails. 
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Skewness is a third standardized moment that measures the 
degree of symmetry of a probability distribution. If skewness is 
greater than zero, the distribution is skewed to the right, having 
more observations on the left. S is the third central moment of 
X, divided by the cube of its standard deviation. 
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A normally distributed random variable should have skewness 
near zero and kurtosis near three. Two steps are needed to draw 
a kurtosis and skewness curve plot. The first step is to calculate 
the kurtosis and skewness of each wavelength variable; this 
study used the kurtosis and skewness functions in Matlab® 
(R2008a). The second is to plot the calculated kurtosis and 
skewness (double y axes) over each wavelength (x axis). For 
this, the "line" function in Matlab® (R2008a) was used.  

http://www.asdi.com/


 

 

 
3. RESULTS AND DISCUSSIONS 

3.1 Plots of the Lilliefors normality test 

Figure 1 presents the Lilliefors normality test results of each 
wavelength variable from the 16 data sets mentioned in Section 
2.3. Eight spectra transformation methods divided this figure 
into eight pairs. Each pair has two bar plots, the upper subplot 
represents the normality test result from the untreated soil 
sample, and the lower subplot is for the pretreated sample. In 
each bar plot, the value read from the y axis can be either zero 
or one, indicating either normality or non-normality of the 
responding wavelength variable from the x axis. The bar color 
is in blue. Thus, the areas in blue indicate the non-normality of 
corresponding wavelength variables, while the blank areas or 
the areas in white indicate that the corresponding wavelength 
variables take a normal distribution. By means of the Lilliefors 
normality test plot, one can simultaneously investigate the 
normality of thousands of wavelength variables from spectra 
with different transformations and from samples with different 
preparations. 
 

 
Figure 1. Lilliefors normality test plots (at a confidence interval 

of 0.05). 
 
The normality test results of the case data show that wavelength 
variables from differently transformed spectra are not always 
normally distributed. The wavelength variables of SNV are 
normal in the region of 1700–1900 nm. They are non-normal in 
the regions 400–1000 nm, 1300–1600 nm and 2000–2500 nm. 
For the continuum removal spectra, normal wavelength 
variables exist mostly in the region of 400–550 nm. The 
normality test results of wavelength variables from the 
derivative-based transformations show a discrete pattern. It was 
noticed that for the pretreated sample, the wavelength variables 
in the region 1880–1950 nm are non-normal for the 1st 
derivative absorbance, whereas for the 2nd derivative 
absorbance, they are normal. After examining the bar plots one 
by one, we found that the region 1880–1950 nm is an important 
region where changes happen, either from non-normal to 
normal or normal to non-normal. As wavelengths around 1900 
nm are known to be related to vibrations of hydroxyl (―OH) 
groups in water molecules, the normality test plot could help to 
select the spectra transformation methods when modelling the 
relationship between soil moisture and spectral wavelengths. 
 
Soil sample preparation processes such as air-drying, grinding, 
and 0.2 mm sieving can drastically change the distribution of 
wavelength variables (Figure 1 and Figure 2). About 1/3 of the 
reflectance wavelength variables are non-normal whereas the 
number increases to 1/2 after the soil samples are pretreated, 
including the whole visible region. For the soil samples without 
preparation, the wavelength variables from the absorbance 

spectra, in almost all the region of VNIR (350–2500 nm), are 
normal. For the soil samples with preparation, however, 
wavelength variables are normal only in a narrow region around 
550 nm. The pattern for the wavelength variables from 
derivative-based transformations is like a barcode. The pattern 
changes, which result from soil sample preparations, are less 
clear. The signal noise magnified by derivative-based 
transformations might be a potential factor that adds to the 
pattern complexity. 
 
The Lilliefors normality test plot is advantageous for its easy 
understanding and its ability to simultaneously present the 
normality test results of thousands of variables. This method, 
however, has some limitations, and the results depend on the 
confidence interval of the Lilliefors normality test. Different 
confidence intervals may result in different results. Thus, the 
bar plot could be different even for the same data set. Secondly, 
wavelength variables that have different distributions could 
have the same normality test result. In other words, the 
Lilliefors normality test plot does not provide any details about 
the distribution of the wavelength variables. 
 
3.2 Plots of the kurtosis and skewness curves 

For the wavelength variables of reflectance from the pretreated 
sample, the kurtosis curve reaches as high as 20 in the region of 
350–500 nm, and decreases sharply in the region of 500–800 
nm. In the region thereafter, the curve is even and approaches a 
value of 3. The skewness curve has a similar curve shape, but 
fluctuates a little around 1400 nm, 1900 nm and 2200 nm. In 
the region of 350–1400 nm, the wavelength variables are 
positively skewed; in the region of 1400–2500 nm, the 
wavelength variables skew to the left a little. For the wavelength 
variables of reflectance from the untreated sample, the kurtosis 
curve varies from around 12 at 350 nm to around 3 in the region 
of 600–2500 nm. The skewness curve decreases from 2.5 at 350 
nm to approximately 0.8 in the region of 600–2500 nm. It then 
fluctuates in the opposite direction to that of the pretreated 
sample at around 1400 nm and 1900 nm. Although the 
orientation of the peaks is to the opposite, the absolute values of 
both skewness curves increase together at around 1400 nm and 
1900 nm. Such phenomena might be related to the vibrations of 
hydroxyl (―OH) groups in water molecules. Valleys on the 
skewness curve for the pretreated sample are also found at 2200 
nm and 2350 nm, whereas no peaks were found on the curve 
from the untreated sample. The differences of these two kurtosis 
curves in the region of 350–760 nm indicate that the soil sample 
preparation process increases the visual similarity of most of the 
71 soil samples. 
 
For the wavelength variables of absorbance from the pretreated 
sample, the kurtosis curve is higher in the visible region and has 
a peak at 500 nm. It decreases to 5 and becomes horizontal in 
the region of 750–2500 nm. The kurtosis curve from the 
untreated samples is quite even and parallel to the x axis at 
about 3 in almost the whole region of 350–2500 nm. The 
skewness curve for the pretreated sample is below 0 for most 
parts of the visible region and has two valleys at 400 nm and 
500 nm. This curve rises to above 0 at 600 nm, approximately, 
and grows slowly and becomes even when it reaches 1 at 
around 1400–2500 nm. Two tiny peaks are visible at 1400 nm 
and 1900 nm. For the untreated sample, the skewness curve is 
about 0 at 350 nm, then increases slowly and intersects with that 
of the pretreated sample at 750 nm, where it reaches to about 
0.5. The curve then vibrates around 0.5 in the region thereafter. 
Two tiny peaks at 1400 nm and 1900 nm are also visible.  



 

 

 

 
Figure 2. Kurtosis and skewness curve plots. 

 
The patterns for both the kurtosis and skewness curves from the 
SNV-transformed spectra are not that flat in comparison with 
those of absorbance. For the pretreated sample, the kurtosis 
curve has the first valley at 400–450 nm, where the curve 
reaches as low as 3. It then upsurges to about 44 at 550 nm. The 
curve then decreases sharply all the way from 550 nm to 750 
nm. In the region of 750–1200 nm, the curve fluctuates a little 
with a decreasing trend. In the region of 1200–1550 nm, a 
rising trend, accompanied with a spinous valley at 1400 nm, is 
visible; in the region of 1450–1550 nm, it fluctuates slightly 
and frequently. After the declivity in the region of 1550–1700 
nm, the curve reaches to about 3. It then remains even in the 
region of 1700–1850 nm. The curve upsurges almost vertically 
from 3 at 1850 nm to about 55 at 1900 nm, and then drops 
sharply to about 13 at 2100 nm. It then increases to about 35 at 
2250 nm, decreases to about 15 by 2350 nm, and then increases 
again to around 36 at 2450 nm. The kurtosis curve for the 
untreated sample generally has a similar curve shape as that of 
the pretreated sample, but fluctuates less severely with lower 
peaks, and has no peak at 1900 nm and 2450 nm. Large kurtosis 
usually indicates clustering of the data. From the two kurtosis 
curves in the "Standard normal variate" subplot, one can easily 
point out that at which wavelengths do these two curves differ 
from each other, and afterwards propose hypothesis or potential 
explanations. 
 
The skewness curve in the "Standard normal variate" subplot 
for the pretreated sample is below 0 in the regions of 350–450 
nm and 1850–2500 nm. It has a peak at 550 nm and three 
vibrations at 1400–1550 nm. In the region of 1850–2500 nm, it 
has three valleys and two peaks. The valley bottoms and peaks 
of the skewness curves correspond to the peaks and valley 
bottoms of the kurtosis curves, one by one. The skewness curve 
for the untreated sample is closer to 0, when compared with the 
curve for the pretreated sample. It also has a peak at 550 nm and 
vibrates at 1400–1550 nm, but has no evident peak at 1850 nm 
and is more even in the region of 1850–2500 nm.  
 
The kurtosis and skewness curves for the derivative-based and 
continuum removal transformations fluctuate so severely that it 
is difficult to relate each peak and valley with certain spectral 
features of a soil parameter, or even to distinguish the curve 
between the pretreated and the untreated samples. For the first 
derivative based transformations, vibrations of the skewness 
curves are more evident at 1450 nm and 1850 nm. For the 
kurtosis curves, some values are extremely high at 1450 nm and 
1850 nm. The skewness curves for the CR transformations are 
below zero. The complexity of the curve patterns might be due 
to the noise effects magnified by the spectra transformations, as 
well as useful spectral features.  

 
A possible perspective for some of the peaks and valleys in all 
the eight subplots (Figure 2) could be that the non-normality of 
spectra-related soil parameters results in the non-normality of 
specific wavelength variables. Spectra transformations and soil 
sample preparation might amplify the differences of skewness 
and/or kurtosis between wavelength variables related and not 
related to soil parameters. Measurement of those spectra-related 
soil parameters might help to reveal the truth. 
 
For the 71 soil samples considered, eight subplots in Figure 2 
show how spectra transformations influence the kurtosis and 
skewness of each wavelength variable. Each subplot shows how 
the kurtosis and skewness curves fluctuate in the region of 350–
2500 nm. The effects that sample preparations have on the 
wavelength variable can also be identified, and further 
represented with different line types. The left y axis in blue is 
the kurtosis axis; the y value on the blue curves should read 
from this y axis. A larger y value usually means the distribution 
of the corresponding wavelength variable has a higher peak. 
The right y axis in black is the skewness axis; the y value on the 
black curves should read from this y axis. A positive y value 
from the black curve indicates that the distribution of the 
corresponding wavelength variable is skewed to the right. The 
larger the y value, the more observations are there on the left 
while examining a histogram of specific wavelength. The 
advantage of plotting together the kurtosis and skewness of each 
wavelength variable is that we can easily see the trend of 
kurtosis and skewness curves at the same time over the 
wavelength axis. This can help to answer the questions of in 
which wavelength region do the kurtosis and skewness move at 
the same direction and in which at the opposite. Answering 
such questions could provide a statistical insight into the effects 
that soil sample preparation process has on the spectra. 
 
3.3 Histograms for wavelength variables of specific interest 

The Lilliefors normality test plot and the kurtosis and skewness 
curves plot can conveniently sketch the distributional 
characteristics of thousands of wavelength variables, 
simultaneously. The examples given above demonstrate the use 
of these plots for statistical understanding of the effects of the 
spectra transformations and sample preparations. Interesting 
patterns could also be found in Figure 1 and Figure 2. For 
further exploration of specific wavelength variables, a 
histogram is suggested. Figure 3 demonstrates the use of 
histograms in the distribution analyses of wavelength variables 
at 1450 nm and 1900 nm. In case one is not familiar with the 
meaning of kurtosis and skewness, or not used to such terms as 
“positively skewed”, you can first use the Lilliefors normality 
test plot and/or the kurtosis and skewness curves plot to identify 
the wavelength variables that are of interest, or that you have 
problems with. After that, the histograms of specific wavelength 
variable(s) can be drawn, as shown in Figure 3. 
 

 



 

 

Figure 3. Histograms of wavelength variables at 1450 nm and 
1900 nm from different spectra transformations and soil sample 
preparations (kurtosis denoted as “k”; skewness denoted as “s”) 
 
Wavelength variables at 1450 nm and 1900 nm are selected as 
examples for their physical relations with the vibrations of 
hydroxyl (―OH) groups in water molecules (Paul J, 1997), and 
they are the wavelengths where peaks and valleys occurs in 
Figure 2. It can be seen from Figure 3 that the distribution of 
wavelength variables at both 1450 nm and 1900 nm are mostly 
different, and do not always take on a bell shape. The 
distribution can be dissymmetric, and sometimes has a steep 
peak. Figure 3 also shows that soil sample preparations could 
dramatically modify the histograms of wavelength variables at 
1450 nm and 1900 nm. For examples, the wavelength variables 
at 1450 nm and 1900 nm in "Reflectance" and "Absorbance" 
subplots change from platykurtosis to leptokurtosis with soil 
sample preparations, showing that values are more clustered. 
Potential “outliers” could also be identified from the “Standard 
normal variate” and “Continuum removal” subplots. 
 
It can be drawn from the above discussion that soil sample 
preparations can drastically change the distribution of 
wavelength variables at both 1450 nm and 1900 nm, both of 
which are absorption bands from hydrogen bonding. Therefore, 
when applying statistical methods with normality assumption in 
the wavelength variables, the distribution analyses should be a 
prior step. 
 

4. CONCLUSIONS 

Spectra transformations are necessary when estimating soil 
sample parameters from VNIR spectra. Our knowledge about 
the effects that spectra transformations have on the distribution 
of wavelength variables is limited. The recent trend of 
extending the scope of VNIR spectra to field use also requires a 
better understanding of how soil sample preparation can 
influence the distribution of each wavelength variable. 
Traditional distribution analyses are deficient for analyzing 
thousands of variables at a time. This study proposes two novel 
methods for simultaneously analyzing the normality and 
distributional characteristics of thousands of wavelength 
variables: (1) the Lilliefors normality test plot; (2) the kurtosis 
and skewness curve plot. The histograms of wavelength 
variables at 1450 nm and 1900 nm are also drawn for a 
comparative study between the classical distributional analysis 
and the proposed methods. 
 
This study demonstrates the application of these two methods 
with 71 soil samples collected from the the Le'an River 
floodplain of China. Each bar plot in the Lilliefors normality 
test plot exhibits different patterns, indicating that the normality 
assumptions in the wavelength variables are selectively 
advocated. Interesting patterns could also be found in the 
kurtosis and skewness curves plot. A possible explanation for 
the vibrations on the skewness and kurtosis curves is proposed: 
the non-normality of spectra-related soil parameters results in 
the non-normality of specific wavelength variables. The 
differences of skewness and/or kurtosis between wavelength 
variables can be amplified by the spectra transformations and 
soil sample preparation. Whether the proposed explanation can 
be a statistical mechanism that makes the spectra 
transformations and soil sample preparation effective in the 
VNIR-based estimation of soil parameters deserves further 
study. The inspiration for the distributional analyses in the 
wavelengths variables could be a contribution of this paper. 

Moreover, the kurtosis and skewness curve plots coupled with 
the histogram of specific wavelength variable could be a 
potential graphical tool for “outliers” searching and 
identification. 
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