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THE CONCEPT OF "PHOTO-VARIANT" SELF-CALIBRATION 

AND ITS APPLICATION IN BLOCK ADJUSTMENT WITH BUNDLES 

ABSTRACT 

This paper describes the concept of "photo-variant" se 1 £-calibration, 
which offsets many shortcomings raised by "block-invariant" self-calibra­
tion. The photo-variant approach differs significantly in that it assigns 
an individual set of compensation parameters to each photograph or group 
of photographs (strip) rather than postulating a common set of parameters 
for all photographs in the block. 

Although this approach requires a more laborious computational effort, 
it is a generalized self-calibration scheme applicable for any type of 
camera (metric or non-metric) and photography (aerial or close-range). 
Mathematical formulations and associated computational considerations, 
especially the means of circumventing the problem of ill-conditioning, 
will be discussed in detail in this paper. 

INTRODUCTION 

In recent years, aerotriangulation has become a suitable tool for 
geodetic control densification. This is primarily due to the fact that 
rigorous simultaneous block adjustments have provided suitable accuracies 
with relatively low ground control requirements. Theoretically, the fully 
analytical bundle approach is most accurate. With the inclusion of addi­
tional compensation parameters or other forms of "self-calibration", the 
bundle adjustments are now coming close to the theoretical accuracy expec­
tations. As will be shown later, computational considerations have re­
stricted the majority of self-calibration approaches to some kind of 
block-invariant formulations (i.e. calibration parameters being assumed to 
remain unchanged throughout the block of photographs). 

Aside from the great advances in aerotriangulation techniques to date, 
much effort has been expended, especially in the last two decades, to 
broaden the application of photogrammetry into the close-range field of 
study, where non-metric (or amateur) cameras are widely utilized to solve 
specific problems. Since non-metric cameras are not designed with the 
acquisition of metric data in mind, their use in photogrammetry must be 



accompanied by a more complex calibration system than that normally associ­
ated with metric (aerial) cameras. The nature of the close-range, non­
metric photography usually requires that interior orientation be recovered 
from eXPosure to exposure. Existing self-calibration approaches as such 
are not suitable because of their block invariant modelling. 

The main objective of this study is to develop a system which contains 
the benefits of both, namely self-calibration scheme applicable whether the 
camera is metric or non-metric. More specifically, the purpose is to com­
plement the conventional self-calibration concept with a more general 
approach - photo-variant self-calibration - by postulating an individual 
set of calibration parameters for each photograph or group of photographs 
in the block. Rather than limiting it to close-range situations, it is 
attempted to make it general so that it may be utilized to cover the main 
fields of photograrrmetric applications ranging from aerotriangulation to 
close-range laboratory photogrammetry. 

Although the photo-variant concept gives a more theoretical account 
of self-calibration than the block-invariant concept, an appreciable 
increase in cost of data reduction may not always be justified in the area 
of production aerotriangulation. Rather, it proves useful for research 
and scientific purposes, particularly for close-range laboratory applica­
tions. This is why this paper is presented to Commission V rather than to 
Commission III. 

BLOCK TRIANGULATION WITH SELF-CALIBRATION 

The conventional block triangulation approaches may be categorized 
broadly as "polynomial", "independent-model" and "bundle" approaches. 
The polynomial approach is rather classical although still used today. It 
requires more control points and yields poorer accuracies than any other 
approach due possibly to lack of mathematical rigour. Therefore, the word 
"block triangulation" is presently almost exclusively taken to mean the 
rigorous approaches either with independent models or with bundles. 

Theoretically, the bundle approach is expected to provide higher 
accuracies than the independent-model approach, since the latter requires 
an additional procedure of relative orientation to produce independent 
models, which implies possible degradation of accuracies. However, com­
parative tests between the two approaches have shown that, contrary to 
theoretical expectations, there is no significant superiority of the bundle 
approach to the independent-model approach unless the image coordinates 
are free of systematic distortion[ll]. 

The existence of systematic errors usually plays havoc with restitu­
tion of a bundle of rays, since it is only uncorrelated random errors that 
are commonly postulated for the least-squares principle on which the vast 
majority of block adjustments are based. Consequently, it is a major 
concern of calibration to single out systematic criteria of image distor­
tion. 

Depending upon the degree of functional sophistication, calibration 
techniques are commonly classified as three basic categories: "pre­
calibration", "on-the-job calibration" and "self-calibration"[l7]. A most 
rigorous calibration in this context can be accomplished with the method 
of self-calibration. This technique differs significantly from the others 



in that it relies for the determination of interior orientation on the 
distribution of unknown object points rather than known object control 
points, and on the projective geometry of the multi-stereo formation over­
lapped by two or more photographs. 

As indicated by its designation, self-calibration was initially de­
voted to a complete recovery of interior orientation in the absence of 
absolute control information. This was successful in several experiments 
with the aid of the strong configurations afforded by somewhat unusual 
photography such as highly convergent photography, and by the specific ex­
tension of the mathematical constraints[7,20,23]. 

When applying self-calibration in general practice such as in aero­
triangulation, the advantage of the strong configurations supported by the 
convergent photography is given up for the advantage of requiring the 
normal (vertical) case of photography. In this type of application, there 
are only mathematical constraints governing the positioning of the image­
object rays. They are therefore much freer to move around during the solu­
tion, and require good three-dimensional geometrical configurations in the 
object space, plus certain amount of ground control to effect strong math­
ematical solutions. 

In the latter case, it is possible to introduce horizontal and verti­
cal controls separately, and their minimum requirements are theoretically 
independent of the number of unknown calibration parameters being carried. 
However, a problem of biock triangulation consists essentially in deter­
mining the absolute dimension of the object space, which makes the inclu­
sion of control information inevitable regardless of whether self-calibra­
tion is used or not. 

The extension of the conventional triangulation approaches, primarily 
developed for the bundle approaches, has been accomplished by incorporating 
additional compensation parameters as part of the unknowns in the mathemat­
ical formulation, thus permitting simultaneous recovery of these para­
meters at the exact instant of object photography. This approach is called 
bundle adjustment with additional parameters or self-calibration. The 
first successful application of self-calibration into conventional aero­
triangulation was presented by Bauer and Muller[2] in 1972. Since then, 
the application of this computational procedure to many other approaches 
followed irnrnediately[9,12,15,19,21,26,29]. 

COMPENSATION PARAMETERS IN SELF-CALIBRATION 

In early approaches self-calibration was practically limited to the 
determination of the basic interior orientation parameters (principal point 
and principal distance) without carrying image distortion as unknowns[23]. 
Depending upon the practical considerations of introducing additional para­
meters, systematic image distortion has been parameterized with many vari­
ations, which can be divided into two major categories. 

The first is concerned with the "decomposition" of image distortion 
into various components of lens distortion and film deformation. This 
procedure has been predicated on the assumption that all factors affecting 
image perturbations could be physically interpreted, thereby predicting an 
individual mathematical model for a specific distortion component. Such an 
interpretation is compatible with the conventional calibration parameters 
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for symmetric radial lens distortion [4], dE"centerin'] lens distortion [5,6, 
10] and affinity film distortion[l6]. 

A somewhat more complex situation exists when treating the so~histi­
cated distortion characteristics that are not explicitly inter~retable, ill1d 
hence the "composite effects" of systtcmatic errors are modelled as an 
entity regardless of the contribution from each individual source. In this 
case, image distortion is considered as representing collectively a popula­
tion of systematic errors whose members are not explicitly specified. This 
forms the basis for the second category of parameterization technique. 

Recently, there has bepn a strong tendency to rely on this technique, 
which is essentially connected with the attemp to introduce computational 
convenience characterized by an orthogonality of functions such that compu­
tational problems due to ill-condition may be better controlled. The math­
ematical functions in this category consist principally of two classes of 
functions, namely algebraic polynomials[8,9,13] and trigonometric functions 
[2,3,22,24]. Included with the latter is also the spherical harmonics 
function[l4], which has recently received attention in developing the self­
calibration systems. 

In both of these cases the parameterization techniques may face a 
criticism that the actual form of the distortions may not fully conform to 
the t-Jrescribed distortion functions. However, because of the nature of the 
stochastic approximation, it is practically impossible for any function to 
t-JerfPctly synthesize various distortion characteristics without excluding 
the unpredictable components. D(>Spi te a large volume of theoretical work, 
the choice of parameters is still empirical, and the accuracy of self­
calibration, therefore, depends largely on how well the selected parameters 
define the "n,ality". 

"BLOCK-INVARIANT" AND "PHOTO-VARIANT" SELF-CAl 1BRATION 

Although two distinctive procedures for self-calibration were con­
ceived at th(:' outset, much effort has been expended to depict its potential 
with only one of them. In reviewing numerous self-calibration approaches 
cited in the literature, it is perhaps understandable that the majority of 
investigations has been Principally concerned with calibration of aerial 
cameras for which a set of compensation parameters is commonly forced to 
remain invariant throughout the block of photographs. This procedure, 
known as block-invariant self-calibration[8,13], forms the conce~tual basis 
for many self-calibration approaches in use today. 

The block-invariant procedure, however, has some serious drawbacks 
that can cause bottlen~cks in production environment. Obviously, the 
validity of block-invariancy must be questioned in many instances where 
there is no uniformity of interior orientation between a series of expo­
sures. This raises difficulties, for instsnce, in aerotriangulation where 
the photography employs more than one cameras with different interior ori­
entation. EvE~n for one camera, time-dependent variations in film and lens 
distortion could occur in different missions. An alternative difficulty 
also arises in close-range photography, which usually requires a different 
focus setting for each exposure. Therefore, existing block-invariant self­
calibration is tc1eoretically restricted to the homogeneous photography, 
however such an ideal condition is very limited in actual practic2. 
Despite this limitaticm, most of the references cited thus far have 
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uncritically adopted the block-invariant concept as accounting for self­
calibration. 

The shortcomings raised by block-invariant self-calibration can be 
offset if an independent set of compensation parameters is postulated for 
each individual photograph involved[26]. This procedure is termed here as 
photo-variant self-calibration. Although the idea of photo-variancy has 
been sporadically proposed in the literature[l3], the successful applica­
tion of this app-r-oach to block triangulation has been very limited until 
now. 

When comparing the two procedures, it is important to bear in mind an 
essential requirement for computational design such as to maintain its 
determinacy. This requirement is usually met by making an appropriate 
selection of unknown parameters such as to avoid excessively high correla­
tions between them. From this point, the block-invariant procedure is 
highly advantageous since the number of compensation parameters remains the 
same no matter how many photographs are included in the solution. There­
fore, block-invariant self-calibration has always a recourso to the deter­
minacy provided by a "limited" number of unknowns wit.hin which the unfavor­
able correlations can be controlled. 

In contrastto the block-invariant scheme, the photo-variant formula­
tion increases the number of unknown compensation parameters linearly with 
the number of photographs. This takes immediate effect by generating mutu­
ally ill-conditioned correlations among the freely increasing number of un­
knowns. In addition, the great increase in the number of unknowns makes a 
more laborious computational effort inevitable, especially in solving a 
large system of normal equations. This unfavorable situation has naturally 
caused the majority of investigators to use the block-invariant procedure 
without a serious risk of running into ill-conditioning problems. The 
widespread adoption of the block-invariant procedure, together with its 
computational economy, has tended to overshadow the shortcomings inherent 
to this procedure. 

It is now necessary to complement the block-invariant concept with its 
counterpart now defined as photo-variant scheme. Although computer inten­
sive, photo--variant self-calibration is a far more desirable method of 
calibration applicable for any type of camera (metric or non-metric) and 
photography (aerial or close-range) , which is virtually independent of the 
application. It is in this context that the photo-variant scheme is re­
garded as the most powerful form of self-calibration, and in fact this is 
one major reason for this research. 

"PHOTO-VARIANT" SELF-CALIBRATION PROGRAM 

The self-calibration system, proposed in this paper, has been develop­
ed for application to bundle triangulation in general, and the photo-vari­
ant procedure in particular. The mathematical basis was laid down earlier 
in the experimental program system UNBASC1[16] for a limited number of 
photographs, which the author developed at the University of New Brunswick. 
The interim phase of this program design was presented to the previous 
congress of the International Society for Photogrammetry[26]. 

Development and refinement of the software actually spanned a number 
of years, during which the experimental program was extended into two dif­
ferent versions. The new computer programs (named UNBASC2 and CMPASC3) 



make explicit provision for photo-variant self-calibration with no limita­
tions placed on the number of photographs, image points and object space 
controls to be handled. The two programs differ widely in accommodating 
the compensation parameters, howe\ ·~r both are based on the same form of the 
collinearity condition equations. Since a fuller derivation of these equa­
tions can be found elsewhere, the description given herein is meant only to 
bring out a short summary. 

The collinearity condition, including compensation parameters, can be 
expressed in analytical form: 

where 

and 
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(X, Y, Z). are unknown ground coordinates of object point i, 
l 

(Xc, Yc' Zc). are unknown ground coordinates of exposure station 
J of photograph j, 

[R] . is the 3X3 rotation matrix of photograph j in terms of 
J rotations w, ¢ and K, 

(x, y) .. are comparator coordinates of object point i measured 
lJ on photograph j, 

(x 0 , y 0 , c). are unknown parameters of principal point and 
J principal distance of photograph j, 

(6x, 6y) .. are the x and y components of image distortion of 
lJ object point ion photograph j. 

The object space control coordinates are incorporated into the solu­
tion separately in X, Y and Z, and therefore they may be either horizontal 
or vertical control in the following condition equations: 

Gx· - xc. - X. 0 
l l l 

Gyi - Yc. - y 0 ......... (2) 
l i 

G2 . - zc. - z. = o 
l l l 

where (XG, YG, ZG)i are the known coordinates of control point i. 

Consider the condition equations as a function of two sets of unknowns 
X1 , X2 , and the observed quantities L: 

-X1 (/l,x, 6y, xo, yo, Ct XC, Yc, Zc, W, ¢, K) 

X2 (X, Y, Z) 

then, equations (l) and (2) can be expressed in general form as: 

F(Xl, X2, L) = 0 

G(X2, L) = 0 
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The system of condition equations (3) is non-linear, and any redun­
dancy in observations lends itself to a least-squares adjustment. There­
fore, the solution is based on a linearized form of the condition equations 
following the least-squares principle. Note that the object space control 
coordinates are treated as observed quantities, so that their individual 
accuracies may be differentiated in the least-squares adjustment. 

So far the mathematical formulation has been confined to the condition 
equations with no consideration being given to the compensation parameters. 
As mentioned earlier, analyses of these parameters have led to the two dif­
ferent versions of self-calibration programs. 

Self-Calibration with UNBASC2: 

The UNBASC2 program utilizes the conventional distortion functions of 
radial-symmetric and decentering lens distortion[4,6], as well as film 
shrinkage and non-perpendicularity of the comparator axes[l6]. By intro­
ducing the latter, the image coordinates are solely based on the comparator 
system, which makes the need for fiducial marks optional rather than manda­
tory. The compensation parameters 6x .. and 6y .. in equations (1) are 
defined as: lJ lJ 

where 
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lJ 
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and (k 1 , k 2 , k 3 ) . are the parameters for symmetric radial lens distor-
J tion of photograph j, 

(p
1

, p 2 ). are the parameters for decentering asymmetric radial and 
J tangential distortion of photograph j, 

(A, B) . 
J 

are the parameters for scale differences along the compa­
rator axes and their possible non-perpendicularity on 
photograph j, 

from which it is possible to interpret 
tics by the following relations: 

some of the distortion characteris-

P r2·/[p~ + p~] 

>. 
y 

S = tan- 1 [A/(B+l)] 

where P is the profile of maximum decentering distortion along the axis 
defined by the anti-clockwise angle 8 from x-axis, and Ay is the scale 
factor for y-axis relative to a unit scale along x-axis, S being the angu­
lar deviation from the orthogonality between x- and y-axes[6,16]. 
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Due to expected changes in interior orientation between a series of 
exposures, a set of the ten calibration parameters (x 0 , y 0 , c, k 1 , k 2 , k 3 , 
p 1 , p 2 , A, B) is recovered for each photograph besides the six parameters 
of exterior orientation (Xc' Yc' Zc, w, ¢, K). This leads to, at most, 
sixteen parameters per photograph, plus the X, Y, Z coordinates of every 
observed point in the object space to be carried as unknowns and solved for 
simultaneously in the UNBASC2 program. 

The foregoing formulation, however, has the disadvantage that some of 
the parameters are strongly correlated. This sometimes results in an ill­
conditioned system of normal equations. Therefore, the solution of the un­
knowns requires a special consideration such as to minimize the disturbing 
effects of these correlations. Basically, this is done by segmenting the 
set of unknown parameters into several subset.s in the UNBASC2 program. 
This process is called "fixed" or "sequential segmentation", and will be 
e~plained in some detail later. 

Self-Calibration with CMPASC3: 

The CMPASC3 program has been designed to acquire better computational 
control over the problem of ill-condition. More specifically, the mathe­
matical development has started with the consideration of constraining all 
distortion parameters to a system of harmonic functions. A notable feature 
of the harmonic functions is that they are orthogonal. Orthogonal func­
tions are generally useful because any tendency of ill-conditioning can 
easily be counteracted. This feature has a definite bearing on selecting 
the distortion functions, particularly for the photo-variant approaches. 

The most important harmonic functions are those of spherical harmonics. 
The idea of applying spherical harmonics to self-calibration is not new. 
Brown[9] was probably one of the earliest to advocate the use of spherical 
harmonics for modelling the film plane as being a three-dimensional 
surface; yet his discussion was brief and was strictly prediction. More 
recently, the spherical harmonics model was adopted by Elhakim and Faig in 
their treatment of block-invariant self-calibration[l4]. Although deviated 
from theoretical properties of spherical harmonics, their practical formu­
lation employs the "anamorphic" model of two-dimensional surface harmonics 
such that: 

:r = Ao o. r + A2o•r 2 

+ A11•r•COSA + A22•r 
2 •COS2A + A3pr 3 •COSA + A3 3 • r 3 •Cos3A 

+ B11·r·sinA + B22•r 
2 • sin2A + B31•r 

3 • sinA + B33·r 3 .sin3A 

( 5) 

where r 

A tan- 1 [(y- y
0
)/(x- x

0
)] 

and 6r is the radial component of image distortion, 

A .. and B .. are unknown coefficients. 
l] lJ 

Analogous to the two-dimensional transformation in the previous model, 
the CMPASC3 program makes direct use of Legendre's (associated) functions, 
after cert~in modifications, such that: 

1~0 



/'::,r C1o•r•cos8 + C11•r•sin8 + C2o•r 2 • (cos28 + ~) 
+ C21•r 2 •sin8•cos8 + C22•r2•sin28 + C3o•r 3 • (cos38 + ~cos8) 
+ C31·r 3.sin8· (cos 28- ~) + C32•r 3-sin28·cos8 + C33•r 3 ·sin 38 

5 
••••• ( 6) 

where 8 = tan- 1 [(x- Xo)/(y- Yo)] 

and C .. are unknown coefficients, all other notations are the same as 
lJ before. 

Recently, the CMPASC3 program has been entirely revised to accommodate 
all three kinds of distortion functions as defined by equations (4), {5) 
and (6). It has been written in such a general manner that the user can 
choose all or part of the unknown parameters in any function desired, and 
perform the calibration accordingly. Initial tests have indicated a sig­
nificant accuracy improvement (about 40%) with the harmonic functions when 
compared to the calibration with the function (4). The same conclusion has 
been arrived at by Elhakim and Faig[l4,15] from their comparison between 
the functions (4) and (5) in the block-invariant mode. This statement, 
however, is based on a limited number of tests only, and more thorough 
tests are presently being conducted. 

STABILITY CONTROL - FIXED OR SEQUENTIAL SEGMENTATION 

The solution of a mathematical model for self-calibration is governed 
largely by correlations between the unknown parameters. Generally, if any 
two parameters are mutually correlated to a significant extent, both tend 
to perform the same function and the entire system of normal equations 
becomes unstable, ill-conditioned or singular, depending upon the strength 
of correlations. A knowledge of these correlatios, therefore, is the key 
to stability control which in turn improves the efficiency of a calibration 
system. This is particularly important for the photo-variant procedure, 
where the amount of unknown parameters increases rapidly with the number of 
photographs. 

Problems of ill-conditioned correlations are usually controlled by 
treating all unknown parameters as weighted observations with "apriori" 
knowledge for weights in terms of variances-covariances. This concept has 
been successfully utilized for several block-invariant self-calibration 
programs[B,l3,15]. A possible disadvantage of this method is that it re­
quires the inversion of the normal equation matrix, because the variance­
covariance matrix of the adjusted parameters has to be evaluated each time 
new apriori constraints are estimated. This requirement presents computa­
tional inefficiency in the calibration programs where the normal equations 
are solved direcly without using the inversion technique such as in the 
UNBASC2/CMPASC3 system. In this case, the inclusion of the additional 
inversion of the normal equation matrix is no longer a simple matter. 

Without resorting to the variance-covariance constraints, the computa­
tional determinacy is relatively easily maintained by an appropriate dispo­
sition of unknown parameters in the mathematical model. In this approach, 
the set of parameters under consideration is segmented into several uncor­
related subsets. The actual evaluation of the mathematical model is then 
carried out with different combinations of the subsets in order to avoid 
ill-conditioning. Only one subset of the parameters is carried as unknowns 
at a time while the others are kept fixed. The unknown and fixed subsets 
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are alternatively interchanged in each successive iteration step until 
proper convergence is reached. This process is called "fixed segmentation" 
which was utilized in the interim phase of the UNBASC2 programming. 

This concept has been further extended such that the unknown para­
meters can be segmented in any iteration step according to the user's 
choice. A small number of unknowns is solved for first, the values obtain­
ed being the approximations used in the next iteration, when a few more un­
knowns are included. This process is continued until the improved approxi­
mations to the unknowns become stable, and the complete solution can then 
be made by iterating with all the unknowns included. Thus, this approach 
is termed here "sequential segmentation" and is successfully devised in the 
latest version of the UNBASC2/CMPASC3 program system. 

The correlations are very sensitivP. to geometrical configurations in 
the object space, and may vary for different types of photography. How­
ever, a number of practical tests have indicated that, although the abso­
lute values of the correlation coefficients differ considerably for each 
photography, their correlation patt,rns remain basically the same for the 
normal case of photography. Typical segmentation required of the normal 
case of photography is as follows: 

(Xc,Yc 1 K,X,Y) 
(Xc,¢,X,Z) 
(Yc,W,Y,Z) 
(Xc,Yc,Zc,W,<jJ,K,X,Y,Z) 
(Xc,Yc,Zc,W,<jJ,K,X,Y,Z,A,B) 
(Xc,Yc,Zc,W,<jJ,K,X,Y,Z,A,B,x 0 ,y 0 ,c) 
(Xc, Y c, Zc, w, <P, K, X, Y, Z, A, B, x 0 , y 0 , c, k 1 , k 2 , k 3 ) 

(Xc 1 Yc,Zc 1 W,<jJ,K,X, Y ,Z,A,B,x 0 ,y 0 ,c,k 1 ,k 2 ,k 3 ,p 1 ,p 2 ) 

where the notations are the same as in equations (l) and (4). 

In the program CMPASC3, the mathematical model has been made closely 
orthogonal between the distortion parameters. Therefore, problems of cor­
relations are essentially non-existent within the distortion parameters, 
although their correlations to other unknown parameters of interior and ex­
terior orientation are not negligible. For this reason, sequential segmen­
tation is still needed for the orthogonal model of CMPASC3, however the 
amount of correlations isusuallyvery small compared to those produced by 
the UNBASC2 model. 

The real item of interest in segmenting the parameters is that prob­
lems of ill-conditioning play a role only in the early steps of the 
iterative solution. This can be proven by the fact that the computational 
determinacy can still be maintained even when all parameters are carried as 
unknowns simultaneously in the later iteration steps. This phenomenon 
naturally leads to the supposition that the majority of the ill-condition­
ing problems arising in photo-variant self-calibration can be attributed to 
some interaction among the unstable initial approximation values for the 
unknowns. 

There are some other cases where ill-conditioned systems are gener­
ated, most of them arise due to weak geometrical configurations in the 
object space. There has been no firmly established basis for defining the 
strength of geometrical configurations. Howc:ver it is empirically known 
that the height variation in the terrain profile should agree with its 



recommended ratio to the projection distance (camera height) , usually at 
least 10% being required for most photography. If this condition is not 
met, the two subsets of parameters (x 0 , y 0 , c) and (Xc,Yc,Zc) are almost 
perfectly correlated. This type of correlation cannot be counteracted 
unless additional restraints are enforced, which means that, if (Xc, Yc, Zc) 
are carried as unknowns, (x

0
, y 0 , c) will have to be held fixed, and vice 

versa. The most critical parameter appears to be c which is normally 
strongly correlated with most other parameters. Therefore, c is often held 
fixed if its value is known to a high accuracy. 

PRACTICAL APPLICATIONS AND TESTS 

Before concluding this article, it is necessary to illustrate the power 
of photo-variant self-calibration by presenting some of the results availa­
ble to date. The photo-variant system developed in this research comprises 
two programs named UNBASC2 and CMPASC3. The latter program is an extension 
of the former, and includes two orthogonal models for calibration para­
meters. Initial tests have yielded very good results with more thorough 
tests presently being conducted. Unfortunately, analysis of the results 
from the CMPASC3 solution is not complete at the time of preparing this 
manuscript, which means that the results reported here are based on the 
UNBASC2 program only. 

To judge the UNBASC2 performance under different operational conditions, 
several simulations have been carried out by the author and his associates, 
and are documented in references[25,27,28]. The specific simulations 
selected for presentation here are those for two types of applications, 
namely close-range laboratory photogrammetry and aerotriangulation. These 
represen~ extremely different situations and encompass the field of photo­
grammetry quite well. 

Case l. Application in Close-Range Photogrammetry 

A laboratory model of a pre-stressed cable net, together with 75 hori­
zontal and 80 vertical control points, was photographed with different 
focussing distances. The camera was hand held (non-metric ASAHI-PENTAX, 
f"' 25 mm.), and a series of four photographs were taken at an approximate 
photo-scale of 1:18 such that all of them overlapped each other. The 
control frame consists of a precision grid as well as metal bolts with known 
but different lengths which represent the elevations when fixed perpendicu­
larly to the grid plate. The control frame was precisely coordinated to an 
accuracy of 0.035 mm. in planimetry and 0.009 mm. in height. 

Tables l and 2 summarize the results of this simulation. Table l shows 
that the residual parallaxes at the object points are reduced significantly 
when calibration parameters are included. This means that a better inter­
section is achieved. The power of self-calibration becomes evident when one 
compares reduced control with the number of unknowns in the solution as 
shown in Table 2. This is t.he control reduction which is likely to be most 
advantageous, as rigorous calibration can be performed with little control, 
much less than for any other calibration approach. Unfortunately, the advan­
tage of requiring fewer control is in most cases balanced by the practical 
disadvantage that the solution converges very slowly. Also evident from 
Table 2 is the general trend of improved check point accuracy with increasing 
calibration parameters and control. 



Case 2. Application in Aerotriangulation 

Although three aerotriangulation blocks are selected for presentation 
here, it is obvious that complete self-calibration can only be tested with 
one of them. The P.E.I. and Gloucester blocks are photographed from a high 
altitude, which, due to rather uniform terrain, acts in a two-dimensional 
fashion. It is therefore necessary to fix the principal distances (c) in 
the solution. The purpose is rather a thorough check of the basic self­
calibration method without carrying the principal distances as unknowns. 
This is most likely to occur in production environment. The Sudbury block, 
although small with only 25 photographs, covers a more varied terrain, and 
represents an ideal three-dimensional situation because of lower flying 
altitude. 

The test results are shown in Tables 3 and 4. In all three block ad­
justments, the residuals at the both object and control check points, as 
computed with self-calibration, are consistently smaller than those obtained 
from the adjustment without self-calibration. It is readily seen that treat­
ing the principal distances as known and equal to the precalibrated focal 
lengths does not lead to appreciable loss of accuracy. This fact indicates 
that the basic self-calibration approach underlying the system is properly 
working. The accuracy improvement, when using self-calibration, is not as 
remarkable as might be desired. This can be explained by the fact that the 
ground control was designed and surveyed to the mapping standard only. This 
could, of course, have been taken into account if accuracy information were 
available for each individual control point. Unfortunately, only a general 
indication by means of standard deviation for all points was given, which 
does not permit any differentiation in weighting. 

Table 4 shows the speed of the solution achieved by the UNBASC2 program. 
The example in this table is taken from the Gloucester block adjustment. 
This block was also adjusted by the "independent-model" aerotriangulation 
program PATM43, and its time requirements are also shown in the same table 
for comparison purposes. It is worth mentioning that the UNBASC2/CMPASC3 
program system uses a highly optimized technique for the solution of a large 
system of normal equations. It is based on the Cholesky's block factoriza­
tion algorithm, and makes full use of external storage if there is not enough 
space available in the central memory, which permits the solution of an 
indefinite number of unknowns. The technique of block factorization, 
coupled with the aforementioned sequential segmentation, ensures further 
optimization for the photo-variant self-calibration. This is evident from 
the comparison with the PATM43 results. 

CONCLUDING REMARKS 

The practical tests have shown that the photo-variant self-calibration 
system works properly. It is general in nature, and can accommodate most 
practical situations. The photo-variant approach permits the use of differ­
ent cameras for the same block without restrictions. As indicated by all 
simulation tests, savings in the number of control points are reduced by 
increased computational efforts. This is particularly the case in this 
photo-variant approach where the more general mathematical modelling leads 
to a sizable increase in the number of unknown parameters. However, an ef­
ficient solution algorithm was developed which keeps the computation time 
within reasonable range, as shown in Table 4. It is important to note, how­
ever, that drastic reduction in object space control requires more itera­
tions with each one adding more computing time. It may therefore not always 
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be the most economical way to proceed with fewer control. 

Another difficulty with the photo-variant approach was the treatment of 
correlations between the unknown parameters. While in the block-invariant 
approach where apriori variances can be assigned to the unknown parameters 
by treating them as weighted observations[8,13], it is impractical to follow 
such a procedure in the photo-variant approach because of the increasing 
number of unknowns. This difficulty has been successfully overcome by 
introducing sequential segmentation of the mathematical model. Having pass­
ed these obstacles, a workable photo-variant system was obtained, which 
models the physical situation more precisely both from theoretical and 
practical poits of view than the block-invariant procedures. 

It has to be emphasized that no self-calibration approach can properly 
function for a flat object or terrain unless additional restraint are intro­
duced. The photo-variant self-calibration method is no exception. Other 
than that, the system is not restricted to a certain project type, and can 
effectively handle close-range laboratory and terrestrial projects as well 
as aerial block triangulation. This is a big advantage over the block­
invariant approaches, because for non-metric photography, invariancy of in­
terior orientation parameters between exposures cannot be assumed. 

In closing, the author acknowledges the support of the management of 
Surveys and Mapping Division, Council of Maritime Premiers, in connection 
with this research. In particular, his deep sense of appreciation is due to 
Messrs. K. Fila and G. Sawayama, whose interest has made immense contribu­
tion to the in-house research activities. 

125 



TABLE 1. SELF-CALIBRATION WITH DIFFERENT PARAMETERSl-
(CLOSE-RANGE STRUCTURE MODEL) 
-
RESIDUALS AT RESIDUAL PARALLAXES NUMBER 

CALIBRATION 
IMAGE POINTS AT OBJECT POINTS OF 

PARAMETERS 
[RMS in mrn.] [RMS in mrn.] UNKNOWNS 

(x) (y) (X) (Y) (Z) 

xa,yo,c .013 . Oll .120 .101 .044 276 

xo ,yo ,c .012 .Oll .059 .046 .020 288 
kl,k2,k3 

xo,yo,c 
.012 .010 .057 .048 .019 284 

p 1 • 0 2 

xo ·Yo ,c .011 .009 .054 .043 .018 284 
A, B 

~ 
r~ -.,~ 

(1"1 xo ,yo ,c 
kl,k2,k3 .012 .010 .056 .043 .019 300 

pl ,p2 

Xo•Yo•C 
p 1, p2 .Oll .009 .053 .041 . 017 282 
A, B 

xo ·Yo ,c 
kl'k2 ,k, .Oll .008 .053 .037 .016 296 
A, B 

xo ,yo ,c 
kl,k2,k3 .004 .U03 .035 .024 .010 304 
pl,p2,A,B 

~ based on 75 horizontal and 80 vertical control points. 
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TABLE 2. SELF-CALIBRATION WITH DIFFERENT PARAMETERS AND CONTROL 
(CLOSE-RANGE STRUCTURE MODEL) 

NUMBER TYPEt RESIDUALS AT RESIDUAL PARALLAXES RESIDUALS AT CHECK 
OF OF IMAGE POINTS AT OBJECT POINTS POINTS 

CONTROL POINTS CALIBRATION [RMS in rnrn.] [RMS in rnrn.] [RMS in rnrn.] 

(USED) (CHECK) (x) (y) (X) (Y) (Z) (X) (Y) (Z) 

H-V H-V 

l .013 .011 .120 .101 .044 --- --- ---
75-80 00-00 

2 .004 .003 .035 .024 .010 --- --- ---

l .013 .011 .119 .105 .042 .131 .126 ---
30-80 45-00 

2 .005 .003 .040 .035 .012 .038 .029 ---

10-10 65-70 
1 .Oll .012 .140 .lll .051 .153 .147 .149 
2 .006 .008 .055 .061 .019 .043 .038 .051 

l . 012 .010 .138 .109 .065 .188 .173 .205 
4-10 71-70 

2 .006 007 .053 .052 .023 .057 .048 .097 

t TYPE 1: 
t TYPE 2: 

self-calibration parameters x 0 , y 0 , c 
self-calibration parameters x 0 , y 0 , c, k 1 ,k 2 ,k 3 , p 1 , p 2 , A, B 

NUMBER NUMBER 
OF OF 

UNKNOWNS ITERATIONS 

276 10 
304 12 

276 12 
304 13 

276 15 
304 18 

276 19 
304 23 



~ 

""' co 

TABLE 3. EFFECT OF SELF-CALIBRATION IN AEROTRIANGULATION 

PHOTO 
SCALE 

NUMBER TYPEt RESIDUAL PARALLAXES RESIDUALS AT CHECK 
BLOCK OF OF AT OBJECT POINTS POINTS 

CONTROL POINTS CALIBRATION [RMS in metre] [RMS in metre] 

SUDBURY 
(25 photos) 

P.E.I. 
(39 photos) 

GLOUCESTER 
(85 photos) 

1: 4000 

1:24000 

1:35000 

(USED) (CHECK) 
H-V H-V 

12-14 63-30 

10-21 47-47 

6-20 39-25 

t TYPE 1: without self-calibration parameters 

(X) (Y) (Z) (X) 

l .013 .015 .008 .074 
2 .009 .010 .004 .067 

l .084 .079 .042 .123 
2* .064 .072 .034 .068 

l .053 .180 .062 .244 
2* .036 .088 .055 .176 

t TYPE 2: with self-calibration parameters (x 0 , y 0 , c, k 1 , k 2 , k 3 , p 1 , p 2 , A, B) 
* with principal distances (c) fixed 

TABLE 4. COMPUTING TIME WITH DIFFERENT NUMBER OF CONTROL POINTS 

NUMBER OF NUMBER OF NUMBER OF TOTAL CPU SEC. PER 
PROGRAM 

CONTROL POINTS UNKNOWNS ITERATIONS CPU SEC. ITERATION 

(USED) (CHECK) 
H-V H-V 

45-45 00-00 2919 4 577 144 
30-45 10-00 2919 4 543 136 
22-45 23-00 2919 5 632 126 UNBASC2 
6-20 39-25 2919 7 746 107 
6-10 39-35 2919 10 1048 105 

45-45 00-00 1889 4 54lt 135 
PATM43 

6-10 39-35 1889 5 654t 131 

t including the CPU time for image refinement and formation of 
independent models. 

(Y) (Z) 

.075 .149 

.057 .135 

.180 .228 

.102 .140 

.229 .481 

.183 .264 
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- International Society for Photogrammetry 
- Photogrammetric Engineering (and Remote Sensing) 
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