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On the Theorotical Accuracy of Block Adjusiment

by the Method of Polynomials
Zheng Zheobao
Abstract

In this paper the author analyses the theoretical accuracy of
block adjustment by the method of pulynomials., Accuracy of & newly
determined point is represented here by the ratio of the variances
of its coordinates and that of unit weight.

In the formula derivation some typical block figures with dif-
ferent distribution of contrel points are adopted. The results are
finally compared with that of the block adjustments by independent

mubGels aud bty bunales.

Introduction

Till now, the block adjustment by the method of polynomials is
the ost commonly used method in the photogrammetric densifica-
tion of control points in China. But the problems of accuracy es-
iimatiog and conscquently the necessary control point distribution
for a block adjustment with polynomials have left much to be solved.
In this analysis some typical block figures with different distri-
bulion of conirol points are adopted, with a view to find the va~-

riances of the thus determined coordinates of the new points. The

photographs are arranged with a standard overlap of 60% and a side
lap of 20%,” The polynomials used in the adjustment are the second
dogree polynomiauls, the third degree polynomials as well as the

conformal ones,
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4. Formulee used for the variance estimations

In an adjustment with indirect observations, the observation equa-

tion in matrix form is

J=4X-1 (1)
end the normal equation is:

Ex=g¢
with E=Aa"RA . c=&TRL (2

the covariance matrix of the parameter 5 is:

¢, = 6. §
by = 6o ¥ (3)
vhere
H
G; H variance of unit welght;
g : coefficient matrix of the parameter X in the
normal equation;
E : weight matrix of the observation vector g.

g)h X\ GX'XZ cre le xt
52 = | (4)
= X - GX{X: 6)(2 X2 « =0 ze xt

6}(‘ xy G,(txz PR GKtXt

As for the corrections of non - linear deformation of each strip
in this experiment, the following four set formulae are used for
planimetry, and equation (5) and (6) are used for height:

second degree polynomial
Ix = 8o+ A/ X + Q¥ + H3X° + a.xy (5)
third degree polynomial

S)( = WAL arx + 8,y + a,xz+ 84Xy + a5x3+ a6x2y (6)
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appro. second degree conformal

(7)

Ix = ar+ 0 + azx - a,y + asx’~ 2a5xy }

5& = O + @2% 83y + 84X + 285Xy + 8¢x%x°

appro. third degree conformal

(8)

dx ua,+o+a;x~aqy+a5x‘—2a6xy+a7x’«}asxzy }
dy =0+82+8; Y48, X+2a5Xy+a,x° +38,x°y+a,x 2

For the j -~ th point in the 1 - th stirip. the serror equation in

the case of equation (5) is as follows:

= Vx; o =8e YA Xij *8a Yij tas x5 B4 Xy yij =dx;; -1xiz  (9)

2
The error equations of the whole block are expressed in matrix

form by:

-1 (10)

]

i
[
[iE-
n

—
1% o

where

a : matrix of the parameters for the non - linear correc~
tion, consisting of a,;, 8,;, «.. 84; for each strip;
25 : matrix of corrections for the approx. values of x -

"coordinates.

The normal equations

A a A 1

p-==vg = o= =
£ 2] - =0

ET dx BT 1

L-—- —— t—4 &=

AT A AT B a AT 1

= = t = = =3
o =;O

B A BT B dx BT 1

= = == = = = =
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Nu Hel [87 r_*_']
- = 0 (11)

T
N N dx n,
= = =

After ths climination of the parameters a , we obtain

(sz ‘Nfz Nao Nla) d_X_=nz - Nz Ny n,
= = = = =i = = = =

From equations (2), (3), we obtain the variance 6x :

2 2 b 4 _ -
gx = (;0 (E__ez —glz E,,, E.IZ) ' (12)

2., the Experiment

In the typical figure of a block, the model base is equal to B,

and the spacing between strips is equal to 2B. (see Pig. 1) To

A {128
u lv{? i - - 28
t
{] [ad a
- 0 ! n 4
CAD (8) (C)> (D
'-2-,—1—
-3 — N
o T °
° o
5 [«]
° [ o]
(o]
i }
t“‘*—"""—" n —-————-——l , n ]
k) CFD
S=/0; nNn=4,6,8 - 20; S=/0; n=4,6,8...20.
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Fig. 1

carry out the computation eight schemes of control point distribu-

{1on are sdopted, among which schemes A4, B, T, D are for the plani-~

metric control (square blocks) while schemes E, F, G, H are for the

heighte,

Due to the limitation of the computer memory in our College, the

variance computations are limited to the block sizes of from 444

{({.e. four strips of four models each), 6x6, 8x8, until 14x14 for

the planimetry snd the block sizes of the following two types for

the heights.

1) The spacing (i) of height control points varies, while keeping

the number of strips I constant, e.g. S = 10, the block sizes

from 10x4, 10X6, until 10X20 {equivalent to 1 = 2, 3, ... 10}.

2) The number of strips S in the block varies, while keeping the

gpacing of height control points constant, e.g. 1 = 10, the

block sizes from 2X10, 4X10, until 20x10C,
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A part of the computation results is show in Fig 2 and in Tables

1 —= 3, The numerals in Fig.,2 as well as in Tables 1 — 3 are the

ratios of the variances of the x - coordinates or the z - coordina-

tes of the determined new points to that of the unit weight.

Iy :
conformal second

degree

(b

conformal third

degree

1.47 1.38 138 147
l? & vay
1.36 | 1.08 103 103 .03 .08 | 136
25 | 1ol j10¢ 108 rod4 1ol |1.25
208 105 (13 105 088 ¢
125 | tol 1.o4 108 104 ror | 125
1.36J‘ 1.08 .03 1.03 103 1.08 1736
yY; 138 “ 138 14T
1.62 .82 1.82 1.62
” ~{v 0
277 | 88 113 173 173 188 {2.7T
(92 | L2T T 14 11 123 | .92
S L1023 21 123 Lio 4
.92 L2t 17 114 rir reT 192
27| 188 1713 .73 .73 1.8% | 2.7
[ ~L> —
162 182 .82 ez
Fig.2. variance ratio of x coordinate.



Pable 1: For the casg of dense peripheral distribution of

planimetric control points

.

cheme

c D
#or,,w[ ey .
> - | Therd . eond dzg, :
Qi’ ‘}Q axeond d‘ﬂ afnb,‘arhﬁ canporn wmw(dz‘g‘ an/orma.l' Ic,,,ﬂ‘ﬁf,‘f,,fﬁ
o . ; g
block o«é;e <%,%r 6-2"““:/ 5, Gm/ 0" 6;/7141/ o Sffm‘/ro‘ 6;:;31/ o7 @uc/(’f
Q‘m/ 0;‘ lo':W/b_: G”M’b—: G-QNM/ Ua) G;mw(t/ O': 6_.:)7:.60!1/0;)
2. 643 7339 7618 /642 /.33% 1617
4 x4 7.644
. 0.928 7.129 17.329 0,979 VNEY
Y 3.3// /.340 7552 /7.714 /. 340 1.589
1.737 0.83% 0.9479 /.380 0.820 /.055
BX8 3.8/8 1328 1.441 2./54 7.328 /.443
2,038 0.775 1086 1429 | 0.778 7337
10 % [0 4./87 /.33 1589 2.314 7.313 15485
2173 0.748 1.096 1495 | 0.748 ro054
. /. . .
12 X 42 4,329¢ 300 2548 /.300
2,250 0.74 9 1547 0.72 9
14 % 14 <4.567 /.28 2.550 1.287
2244 02/ /. 552 0703
16 X 14 4.584 2.7728
2.347% ié4/
Table 2 : For the case of sparse peripheral distribution of
planimetiric control points
i/u«mL A a
SO
(‘%{' Czmoz /55 6imec /Gy
% O;:zmum /6 6% mean /65
=
Aloa/z eonformal wnfarnzat conformal
7 mmd.a/)f weond dtg thevd deg,
| fo.430 1558 1944
4x4 é.830 l7.256 /. 455
13.877 2409 /2,414
éxé 5.bot 153 7079
/.40 2.583 Fidzo
- 8X8 P .
9. 850 /.588 10,388
18.234 2978 P73
r0Xlo 2078 20703
10.782 7.657 1. 585
20.023 3078
r2xl2 —
478 1.67F
3.2/2
j4X14 /_~__558 )
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Table 3 : Variance ratio for the heights

¥

| wecond dlegree qa;:da accond olegree
$&| Gpec/o Seo|  Emec/s
A&g& <g% 6, mean /645 &ba&‘h§ 6, mean/ T3

“g¢ 3 F Al G H
2% /0 1.744 /1.654
1,521 7.336
/f’ X4 /.442 /.580 4% 10 1723 1454
(=2 1,192 0.934 1307 472/
10X56 1.702 1.595 5X10 1.723 /.654
(=3 1.158 0.94/ 1’272 /.02%
/10X8 1.72/ /.422 g X0 1.723 1454
Y 1.142 XN /.162 0.978
foXlo 7.723 1.654 0 X /0 1.723 2454
fe=5 EY 0.945 1131 0.945
10X/2 1219 1.68/ /2 X )0 17235 | 1.65¢
i=& 1,122 0.9¢45 7.009 g 0.923
le X 14 12712 1.703 4% /0 1723 1654
£=7 1,115 0.944 /093 0.%906
10X16 1.724 /722 16 % /o 7723 1.854
£E=8 110§ 1.767 .08/ 0.873
10x/8 1.741 /.737 18X 10 /.723 1.4654
(=19 7.114 0.944 1,072 0.883
Joxzo 1755 1.749 s0x/0 /.723 1.654
=10 1097 0.943 | 2.063 0.875

From the enmlysis of Fig. 2 and Table 1— 3, the following con~
clusions cen, be obtained:

1) It can be seen from Fig, 2 that the weakest point of densifi-
catiog'do not lie in the centre of the block, but rather along the
perimeters of the block when the non - linear corrections was made
by the conformal formulaes ir the planimetric coordinate adjustment.

2) From Table 1 it i3 seen that the theoretical accuracy iz best
for the use of the seéond degree conformal formulae and is worst

for the use of the ordinary polynomials in the planimetric edjust-

ment.



3) The theoretical accuracy of the planimetric coordinates is
less affected by the block size in case of dense peripheral control
distribution (C, D, in the Fig, 1), while adopting the conformal for-
mulae, the theoretical accuracy shows even gradual increase with
the block size. (see from scheme C of Table 1),

On the contrary, the theoretical accuracy of the planimetric
coordinate adjustment is decreasing considersbly with the block
size when the ordinary polynomials are used in the adjustment. (seen
from scheme C of Table 1).

4) Vhen one planimetric control point is added in the centre of
the block with dense peripheral control, the theoreticsl accuracy
of the planimetric coordinate is obviously increased in the case
of the use of the second degree polynomials, while the theoreti-
cal accuracy is practically not affected in the case of conformal

formulae. (compare scheme C of Table 1 with scheme D).

5) In the adjustment of planimetric coordinates with sparse peri-
pheral control distribution (Pig,1, A, B), the theoretical accuracy
decreases cosiderably with the size of the block,

6) In’ the height adjustment, the theoretical accuracy of the de-—
termined heights is decreased with the enlargement of the spacing 4
between the height control points. (see scheme B in Table 3).

7) In the height adjustment when the spacing between the height
control pointe is kept constant, the maximum variance ratio of the
determined heights is practically constant with the increase of the
number of strips in the block. The mean veriance ratio is somewhat
decreased. (see scheme G and H in Table 3).

8) The differsnce of the height control configuration between Fig,
1 E and Fig, 1 F affect the amccuracy of the determined heights rather

slightly.
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In order to verify the correctness of the above concliusions, we

have made Some error computation with simulsted photographs carrying

with them fictitious random errcrs of my = my = £ 10 um in their

imege coordinates. The resulis are summarizged in Tables 4 4L and 4 B

end have shown cosistency with the above conclusions

Table 4A
6_;(:!:%& y 8 c D
NG
accuracy JOX20 | X20 | J0X20 | 6X20 | /0X20 | 6X20 | /0X20| pX20
My (o) tooby | X0.06] | X0.048 | £0.045 | x0.035 40038 | +0.036| t0.038
my(mm) 40087 | *0.102| to0.042| ko040 | too34|To.034 |F0.034 | T0.037
Teble 4B
scheme
v 3
e
2’;‘{ ¢ == 5 L = /O
accur ”? /0 X 20 b X 20 jo X 20 & X 20
m, (mm) +0.063 to0.074 o068 tooso

3.

Formulae for the sccuracy estimation

Based upon the preceding results, formulse for the accuracy

eatination are derived for the cese of ths conformal second de-~

gree formulae aad of the second degree polypoomials in the plani-

retry and for the case of the sscond degree polynouials only in

the heights.

From the date in Table t - 3, according to the least squares

principle, fittings wiih straight lines are mede. The results
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are as follows:
(1) Formulae for the accuracy estimation of the planimetric
coordinates:

scheme A (conformal second degree formula)

6,2
X7 = 6,077 + 1.207 S (13)
6o
Eszean

—r - . 4,918 + 0,574 S (13) a

scheme B (conformal second degree formula)

G« max
7 = 1.374 + 0,144 8 (14)
6,2
—-—i‘&f,i‘fl = 1,235 + 0,037 § (14) e
o

scheme C (the second degree polynomial)

Exzmax P
—F " 2.342 + €.157 3 {15)
szmean
= = 1.596 + 0,051 § (15) a

scheme C (conformal second degree formula)

52
2XMEY = 1,369 - 0,006 S {16)
'
2
_Ei‘z’i‘;ﬂ= 0.971 - 0.019 S (16) a
R _
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scheme D (second degree polynomial)

2
bxmax = 1.261 + 0,098 5 (17)
6%
By mean
Tz = 1.232 + 0,025 3 (17) a
o

scheme D {(conformal second degree polynomial)

F3
6x max

g7 = 1.369 - 0,006 3 (18)
o

2
6-)( mean

s 0.96C - 0.019 S {18) a
(-]

(2) Formulae for the accuracy estimation of the heights:

scheme E

2
b meX = 1,659 + 0,009 i {15)

2
[

2
fzmean

=T = 1.190 + 0,010 1 (19) =

scheme F

2
(Z max

71 = 1.536 + 0,022 1 (20)
[}

2
&mean

=7 = 0.966 + 0,003 4 (20) a
[}

gcheme G

2
(;z max

=3 = 1,723 (wvhen 1=5) (21)

2
Ei?fa” = 1,462 - 0,046 S (when 1i=5) (21) =
(]
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scheme H

2
——5‘:‘—’1,-‘-‘—"- = 1,654 (vhen 1=5) (22)
£o°

2
_[.igl’;fin 1.281 - 0,047 3 (when i=5) (22) a
®

The accuracy of the straight line fitting above are listed as

follows:

Table 5: Accurasy of the stroight line Titting

accara«:y acc«/acy

7.y M it

formula fé formula /

(/3) 0.74 (717) 0.11
(73 ), 0.37 (17), 0.02
(/4) 0.30 (&) 0.0/
(14 ), 0. /0 /8, 0.03
(/15) 0.25 (192 0.02
(/5), 0.09 (/19), 0.0/
(16 ) o.o/ (20)- 0.0/
(167, 0.02 o), 0.0f

From the formulae (14) a, (16) a, (18) a it can be seen that with
the sparse peripheral control distribution, the mean variance of the
planimetric coordinate is 1.6 times the variance of the unit weight
(s=10), while with the dense peripheral control distribution, the
meen variance of the planimetric coordinate is 0.8 times the vari-
ance of unit weight (s=10),

From the formulae (19) a, (20) a, 1t can be seen that with the
gpacing of the height control points i=10, the mean variesnce of
heights 18 1.3 times (scheme E) or one time (schems F) the varience

of unit weight.
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4, Theoreticel accuracy of the block adjust-

ment with polynomials as compared with the

independent model method and the bundle

mathod

The formulae for eccuracy e3timation in the block adjustment with

the method of independent models and of bundles are tsken from fo-

reign literatures

ed in this paper.

and are listed below together with those obtain-

Theoretical accuracy of the planimetric coordinates

Scheme
melhod A 8 ¢
2 2 4
‘ol Oz mean __ 6z mean __ Gzmean _ 0,
polyrzow 5 = 4.92 +0£78 —ensn 1.24+0.0373 & 097-0.0/98
2
,‘nde/aandezd‘ Ox mean =0.47+0.25 1, gff-—’"§“‘£=o.33+o.o£rg 93‘4—"'1-&" = 0.70t0.25 k1t
60 60 60
6;rfm _q;_g_gg_ﬂ__ 6;7’&‘-&)1
bundle i 0.53 7 T =0.2840./50| —Z e g, £
P 6, G,
Theoretical accuracy of the heights
scheme
melhod F
62
. me
Palyﬂalﬂla[f ._iﬂ.lﬁ_,_l_ — 0,77{- 0.003 (
6‘0
62
independent LI — 034+ 0220
6,
6;m
bundle w‘g;m— = 0.93+0./9¢
[/

For the scheme C, the planimetric accuracy of the three methods

are abtained as follows (block size: 10 strips, 10 models / strip):

polynomial

independent

bundie

2
B—,‘ mean

6o*

2
gx meéan

6o°

2
;K mean

6o°

-~

0,78

(23)
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For the height when the spacing between the height control
points is 10, the height accuracy of the three methods are

obtained as follows:

2
polynomial ._.55?'”;_‘_‘_’.’_ = 1,00
¢

F4
independent 6228“" = 2,54 " (24)
[

2
bundle ‘-‘%Tge—ﬂ = 2.83 ]
1]

From the comparisons of the formulae (23), (24), it seens that
the accuracy of the block adjustments with polynomials are not so
much worse than that with the independent model methods. On the
contrary, in the case of dense peripherial control distribution
the theoretical accuracy of the adjustment with polynomials is even
better than that of the independent model method. It i3 to be noti-
ced that the £o° in‘the three methos of block adjustment are not

equal. Purther research works are needed to make the assertions

more affirmative.
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