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Summarv: The relatively small linear adjustment systems in 
close-range photogrammetry offer the possibility of an 
advanced statistical treatment. Using synthetic data, 
precision and reliability features of different network 
types are investigated. Special attention is focussed 
on the problem of additional parameters, introduced for 
systematic error cocpensation and on the internal and 
external reliability with respect to blunder detection. 
As a major result of these investigations a rejection 
procedure for non-determinable add~tional parameters is 
suggested, the extremely bad reliability structures of 
two photo networks are pointed out and large base four 
photo arrangements are recommended for professional use. 
In addition, external reliability measures are recom­
mended for use as tolerance criteria in the future. 
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Precision and reliability aspects in close-range photogrammetry 

1. Introduction 

Close-range photogrammetry covers a wide area of applications which 
sometimes differ considerably from each other with regard to instru­
mentation, number and arrangement of photographs, size and shape. of 
the object, data processing, required accuracy and economic pressure 
for fast completion of the project. This has resulted in a great 
variety of processing techniques being recommended and used, often 
based on approximate solutions, which sacrifice both accuracv and 
economy. Occasionally one fails to see that when convention~! photo­
graphs (based on proje7tive relations) have to be processed analytically, 
a general bundle solut~on potentially has both flexibility and high 
accuracy. 
In order to obtain the best possible results in high accuracy applications 
with a minimum of effort, optimum use must be made of the network design, 
the image coordinate measurements and the applied statistical model of 
bundle adjustment. As matters stand, the network design and the adjust­
ment model can currently be regarded as the weakest parts in the whole 
problem. 
Systematic investigations of the precision of close-range networks (see Hell 
(10)) are largely lacking, compared to the situation in aerial triangulation. 
Similar conditions exist with respect to reliability investigations. 
Systematic error compensation, blunder detection and weight estimation 
(following the general definition of reliability, Baarda (1)) can still 
be considered to belong to a rudimentary. status of development. This, 
of course, is also valid for aerial triangulation to a certain extent. 
So, contrary to the intentions of an Invited Paper - which usually should 
give an overview of the currently available and applied techniques -
this paper includes mainly investigations of the author, in order to 
stimulate future investigations on a more extended basis. 
The quality of a statistical model of the bundle adjustment is charac­
terized by its accuracy.l) The concept of accuracv consists of two parts: 
precision and reliabilitv. Following some statistical definitions 
related to precision and reliability, the effects of both terms are 
demonstrated using different network arrangements based on synthetic 
data. These investigations follow a line of research earlier established 
Grun (6). Special attention is focussed on the problem of additional 
parameters and the internal and external reliabilitv of networks. 

2. The concepts of precision and reliabilitv in the bundle solution 

Let the linear statistical model of bundle adjustment be 

£-e=Ax 
E(£) = Ax 

p 
E(e) = 0 (1) 

1) In order to conform to international terminology the tem "accuracy" 
used here is different from that used in Griin (6 ) • The term "precision" 
in this paper corresponds to "accuracy" in (6 ). 
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e ... vector of true observation errors 
P .•. weight matrix of the observation vector~ 

with the null hypothesis Ho 

H0 : ~ ~ N(Ax,a0
2p-l) (2) 

(i.e., ~has a multidimensional normal distribution with the expectation 
E(~)=Ax and the dispersion D(i)=a0 2p-l; cr 0 ••• 5tandard deviation of unit 
weight, usuallv to be estimated). 
Suppose a min~um variance unbiased estimation of x and cr0 2 is performed 
with 

X = (ATPA)-lATP£ 

& 2 = l(AX - ~)TP(AX - ~) , o r 

and the residuals are denoted by 
v=AX-.2. 

r = n - u (redundancy) 

Then under H0 the distributions of x and v are 

A 

x ~ N(x,Kx) , 
v ~ N(O,Kv) , 

with 

Kx = cro2Qxx 
Kv = cro2Qvv 

(3a) 

(3b) 

(4) 

(Sa) 
(Sb) 

(6) 

The term "precision" describes the statistical quality of the estimated 
parameters x, if the a-priori assumptions (functional and stochastical 
relations) of the adjustment model (1) are considered to be true. Hence 
the covariance matrix Kx contains all the information concerning t·he precision 
of the solution x. The complete matrix Kx however~ is usually too global 
a precision measure, and as such individual precision measures are necessary 
for individual applications. 
The following very popular precision measures are obtained by using the 
traces of the corresponding covariance matrices: 

crx2 = tr~~xx) cry2 = tr(KxY) crz2 = tr(Kxz) (7) 
ny nz 

KxX• KxY, Kxz .•. corresponding parts of Kx for X.Y.Z 
nx, ny, nz ... numbers of X,Y, Z coordinates 

For the relations of these measures to empirical accuracy measures, commonly 
used in test block investigations of aerial triangulation, see Grun ( 9). 

The term "reliability" defines the quality of the adjustment model with 
respect to the detection of model errors. Those errors can be blunders, 
systematic errors (mistakes in the functional assumptions) and weight errors 
(mistakes in the stochastical assumptions). Currently, the term reliability 
refers mainly to blunder detection. This is correct, since a sophisticated 
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self-calibration concept provides for the compensation of systematic 
errors and since the problem of weight improvement should be treated 
separately (preferably by advanced methods for weight estimation). 
It was Baarda ( 1) who developed a rather complete reliabilit~ theory 
which recently has al~o been adopted for the bundle method (Fo=stner (4), 
Griin (6), (7), (8)). 

The internal reliabilitv gives the magnitude of a blunder in an observation 
(Vii) which is just non-detectable on a certain probability level. In 
the following equation it is assumed that only one blunder appears in the 
network: 

o ••• non-centrality parameter of the data-snooping test 
Pi···weight of observation ii 
qviVi···ith diagonal element of Qvv 

The exten1al reliability indicates the effect of this non-detectable 
blunder on the estimated quantities (Vxj). 

(89.) 

(8b) 

The effect on object space point coordinates is usually of dominant interest. 
So far, for bundle adjustment,the internal reliability can be considered to 
be defined in the image space and the external reliability in the object 
space. 

3. Bundle solution refinement by additional parameters 

The procedure of self-calibration using additional parameters (APs) is 
widely accepted to be the most efficient method of systematic error 
compensation. Polynomials have proved to be a proper device in systematic 
image error modeling. The functional, numerical and statistical advan­
tages of bivariate orthogonal polynomials have been emphasized by Ebner 
( 3 ) , Grun ( 5) . Large accuracy improvements with self-calibrating bundle 
adjustment have been reported in aerial triangulation (Brown ( 2), Grun 
( 5), ( 9) and others). In close-range photogrammetr~ the improvements 
are expected to be less significant since here the systematic error sources 
are less powerful. Yet, in order to get the best possible results out of 
a given problem, the self-calibration technique should become a standard 
procedure even in close-range applications. 
In connection with the functional extension of the bundle model, however, 
problems arise with respect to a change of the model quality. The improper 
use of APs may cause serious deterioration of the results instead of 
expected improvements. So a check of the applied statistical model of 
bundle adjustment becomes necessary, usually denoted by "additional para­
meter testing". The significance and the determinability of APs must 
both be taken care of. Significance tests work within a given model, i.e. 
the quality of the model is accepted as it is and the formal significance 
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of individual components or subsets is checked. Insignificant APs have 
to be rejected because they may only weaken the covariance matrix Kx 
without contributing anything positive to the functional model. Useful 
hints for significance testing may be found in statistical textbooks and 
related publications. 
To the best of this author's knowledge the problem of determinability 
has not been treated extensively, nor has it been solved satisfactorily. 
Some suggestions for the simultaneous treatment of both aspects are given 
in Griin ( 5 ) , ( 6 ) • -
In aerial triangulation systems, which usually lead to relatively large 
linear systems (in the order of 1,000 to 10,000 unknowns) to be solved and 
which require much attention in order to avoidwastage of computing 
time, the author has based his rejection decisions on the size of correla­
tions created by APs. Here a correlation coefficient of 0.9 between APs 
and any other unknowns of the system is regarded to be already too high a 
value, thus leading to a rejection of the concerned APs. 
In close-range systems, which normally are by far smaller, more direct 
approaches can be used. The most drastic one is to compare the size of 
standard deviations of final results (e.g. of object point coordinates) 
of the extended system with those of the non-extended conventional bundle 
solution. An extraordinary increase of those standard deviations, caused 
by non-determinable APs, indicate the necessity for rejection. 

Assume the correct statistical model (I) to be 
-e = Ax + Bz - ~ ; P 
E(e) = 0,. D(e) = Ke = cro2p-l 
z ... vector of APs 

This leads to 
E(i) = A..x + Bz 
EI(x) = x 

I Kx z 
' 

Ki = cro2Qix 
Assume the selected (erroneous) statistical model (II) co be 

-e = Ax - i : P 
E(e) = 0, D(e) = Ke = cr0 2p-l 
(here the APs are not modeled!) 

This leads to 
E(i) = Ax + Bz 
(the expectation of i has not changed!) 

EII(x) = x + (ATPA)-lATPBZ 

Kii = cro2(ATPA)-l = cro2Q~ 

(9a) 
(9b) 

(lOa) 

(lOb) 

(lla) 
(llb) 

(12a) 

(12b) 

Hence we get in this case (II) a biased solution x (bias: (ATPA)-lATPBz). 
~I will include smaller variances and covariances than KI, due to the effect 
of APs in model (I). The less the difference between Ki and ~I the more 
we can be sure of not having introduced weak APs. 

In order to demonstrate the effect of APs on the precision of object point 
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coordinates the practical example already used in Grun ( 6) is introduced 
here again (synthetical data). 

z 
, 

Z=O-o--- 7~' ..... ~~----~ 

/// 
X•-5 X•O X•5 

X 
A .•. control points 
0 ••. points to be determined (new points) 
e •.. camera stations 

Figure 1: Synthetic network arrangement for the demonstration of precision 
and reliability features. 

A cube has been assumed containing 27 regularly distributed points; 8 of 
them serve as control points, the rest are new points. The camera stations 
are denoted by nos. 0, ••• ,8. The photos 0,1,2,5,6 are "truly vertical" 
(small base: 2m); the photos 3,4 are convergent (~- 20.5g ), nos. 7,8 
are tilted (w- 20.5g ), both sets include a large base (10m). 

Five different network arrangements are investigated: 

Version Photos 

A 1,2 1 small base, 2 vertical photos 
B 3,4 1 large base, 2 convergent photos 
c 3,0,4 3 photos, common base direction 
D 1,2,5,6 2 small bases, perpendicular to each other 
E 3,4,7,8 2 large bases, perpendicular to each other 
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The object space coordinates of the 8 control points are assumed to be 
free of errors, the image coordinates to be uncorrelated and of equal 
precision (equal weights). APs are introduced as free unknowns. 
The AP set used here is the bivariate orthogonal one introduced by 
Ebner (3 ). Since a wide object range in Y-direction (see Figure 1: 
AYmax = 10 m) compared with the average exposure distance ( Y0 = 15 m) 
is used, this AP set is extended by 3 parameters of the interior 
orientation. Those APs might be useful in many close-r~nge applications 
and as such interesting to introduce and to investigate. 
The 15·APs which we get finally are 

2 2b2 1 = y2 - 2b2 ) .· (with k = x - J 3 
X 

AX = bl + 0 + b3C + b4x + b5y - b62k + b7xy + bsJ. + ... 

v 
Ay = o + bz + b3c - b4y + bsx + b6xy - b721 + o + 

(Ax) ... + o + b1ox1 + o + bl2Yk + o + b14k1 + o 
(13) 

(Ay) ... + bgk + o + b11Yk + o + b13xl + o + b15kl 

Table 1 shows the results of the computations. The mean standard deviations 
of object space coordinates and exterior orientation elements are related 
to cr0 = 1 ~m and are·given in (mm) and (c) respectively. In order to be abla 
to understand the effects of APs the maximum correlation coefficients are 
indicated in each computation version (correlations between object point 
coordinates, NP/NP, between object point coordinates and APs, NP/AP, 
between exterior orientation elements and APs, EO/AP, between APs themselves, 
AP/AP). In addition, the APs which cause such maximum correlations are 
indicated. 
Analyzing the results according to their sequence in Table 1 leads first to 
the 2-photo arrangement 1/2 (A, small base). Here the use of all 15 APs 
yields very bad results in X and Z (correlations~ 1.00), and better though 
not good enough results in "depth" Y. After the rejection of b7 (highest 
AP correlation) the Z-coordinates improve significantly. The same appears 
with respect to the X-coordinates after rejecting b1. A further improvement 
in X by a factor 1.3 is obtained by rejecting b14· The remaining 12 APs 
lead to a homogeneous precision in X,Z, which is not much worse than the 
best possible precision, indicated by the 0-version (which does not include 
the influence of APs). It is interesting to note that the camera constant 
(b3) leads to high correlations (0.98) with theY-coordinates of the perspec­
tive centers, although it does not really deteriorate the object point values. 
Startling as well, are the high correlations (0.98) between coordinates of 
the object points even in the 0-version, which demonstrates the unfavorable 
precision structure of this network ty~e. 
Network 3/4 (B, large base) starts with much better results in the 15 APs 
version. The rejection of bg and b7, however, give a remarkable further 
improvement in X and Z respectively. As in network A the depth Y is 
relatively stable from the very beginning, but has improved by a factor of 
4.8. The better precision structure of network B shows up also in the 0-
version by an improvement of a factor 2.5 against the network A, which is 
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TAB~ 1: Precision measures for different networks 
(related to cr0 = 1 ~m) 

Mean standard Mean standard deviations 
dev. of non- of exterior orientation 

Photo Add. control points elements 
arrange !Parameter ax az cy 

(~ az~ ay C141 aw 
ment version (mm) (mm) (mm) (mm (mm~ (c:) (c) 

1/2 1-15 91.2 95.1 2.4 254 266 0.76 0.20 150 
A 

1-6 90.5 0.52 2.4 253 0.21 0.45 0.18 0.09 
8-15 -
2-6 
8-15 0.61 0.50 2.4 0.36 0.21 0.45 0.18 0.09 

2-6 
8-13 0.48 0.48 2.1 0.31 0.21 0.45 0.13 0.09 

15 

0 0.36 0.36 1.8 0.16 0.13 0.06 0.07 0.06 

3/4 1-15 2.1 0.39 0.50 5.5 1.0 1.8 0.36 0.59 
B 

1-7 0.22 0.39 0.49 0.36 1.0 0.30 0.14 0.59 
9-15 

1-6 0.22 0.18 0.49 0.36 0.19 0.30 0.14 0.12 
9-15 

1-6 
9-13 0.17 0.18 0.45 0.24 0.19 0.30 0.12 0.12 
15 

0 0.14 0.15 0.44 0.14 0.15 0.09 0.06 0.06 

3/0/4 1-15 1.3 0.29 0.45· 3.6 0.71 0.86 0.23 0.38 
c 

1-7 0.16 0.29 0.45 
9-15 

0.21 0.71 0.27 0.10 0.38 

1-6 0.16 
9-15 

0.16 0.45 0.21 0.16 0.27 0.10 0.09 

1-2 
4-6 0.15 0.15 0.42 0.18· 0.16 0.09 0.10 0.09 
9-15 

0 0.12 0.12 0.40 0.13 0.13 0.08 0.06 0.06 

1/2/5/6 1-15 0.35 0.35 1.5 0.26 0.26 0.26 0.11 0.11 
D 

4-15 0.30 0.30 1.3 0.24 0.24 0.07 0.10 0.10 

0 0.26 0.26 1.3 0.12 0.12 0.06 0.06 0.06 

3/4/7/8 1-15 0.13 0.13 0.31 0.19 0.19 0.19 0.11 0.11 
E 

4-15 0.11 O.ll 0.28 0.14 0.14 0.09 0.06 0.06 

0 0.10 0.10 0.28 0.12 0.12 0.08 0.05 0.05 
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Maximal corr. I 
coefficients 

O't:: NP/NP EO/AP 
(c) ~--~--- r-------

'NP/AP AP/AP 

'~<1.00 '>-1.00 
0.10 ---- ------

-vl.OO 2/hl.OO 
'1.1.00 J\.o/1"-l.OO 

0.08 ---- ------
'1.1.00 1/5/8•-0.90 

0.98 Y0 /3•0.98 
0.05 --- - ------

14:0.90 5/14=0.79 

0.98 Y0 /3 .. 0.98 
0.05 ---- ------

8:0.78 3/8•0.77 
0.98 --

0.04 ---- ------- --
'1.1.00 X0 /8-0.998 

0.18 ---- ------
8:0.99 1/8•0.995 
'1.1.00 w/7•0.98 

0.18 ---- 1-------
7:-0.98 1/14•-0.90 

0.88 Y0 /3•0.93 
0.05 ---- - ..... -- .... -

14:-0.92 1/14--0.90 
0.70 Y0 /3 .. 0.93 

0.05 1- - - - - ------
10:0.80 9/15•0.75 

0.70 --
0.04 ---- .... """'-- - --- --

-..1.00 Xo'/8-0. 999. 
0.09 ---- ------

8:0.99 1/8•0.998 
o. 96 Z0 /7•-0.97 

0.09 ---- ------
7:-0.97 2/7•0.75 

0.68 Yo/3=0.97 
0.04 ---- ------

14:-0.72 3/10•0.69 
-0.73 w/2•0.69 

0.04 ---- ------
14:-0.72 1/14--0.61 

0. 77 
0.04 ---- -------- --

U.!:IS Y0 /J•O.!:Ib 
0.04 ---- __ .;.. ___ 

6.7:-0.72 1/8•2/9•0.75 
0.98 Z0 /4•-0.78 

0.04 ---- ------
6:-0.79 <0.5 

0.98 --
0.03 ---- ------- --

0.60 Y0 /3•0.88 
0.05 ---- ------

7:-0.66 8/14•9/15•0. 7 
0.62 w/7•0. 62 

0.04 ---- ------
<0.5 9/15•0.75 
<0.5 -

0.04 ---- -------- --



half the value of the base ratio (b3;4: bl/2 = 10:2). Again the camera 
constant (b3) influences mainly the perspective center coordinates Y0 • 

This effect is explicitely shown in network 3/0/4 (C), where b3 is 
excluded in the fourth computational version. This procedure does not 
affect the coordinates of the object points much, but reduces the mean 
standard deviation of Y0 by a factor of 3.0. It would be worthwhile to 
mention an interesting fact here. Due to the special photo arrangements, 
the Y-coordinates of the object points in all networks have the worst 
precision, but just the opposite is valid for the Yo-coordinates of the 
perspective centers, which are best determinable, compared with X0 ,Z0 • 

In the 4-photo versions 1/2/5/6 (D, small bases) and 3/4/7/8 (E, large 
bases) t~e interior orientation elements b1,b2,b3 are excluded, which, 
however, does not lead to much improvement (factors 1.2 for X and Z). 
Only the version E yields optimal precision results, with and without the 
complete set of 15 APs. 
In order to obtain a better overview, the mean standard deviations of the 
object point coordinates of all versions are graphed against the number 
of APs in the Figure 2. Although all large base versions show relatively 
good precision features in their 0-versions, only version E gives optimal 
results with the full AP set. This version is definitely to be preferred. 

2.0 

0.7 
1.!1 

D 

0.5 

1.0 

O.l 

0 12 15 np 

0 

Figure 2: Precision measures of networks f.. B, C, D, E 
in different additional parameter versions 
(np = number of APs) 

12 

I 
I 

I 

15 np 

These investigations show very clearly the necessity for an individual and 
sophisticated statistical treatment of the APs in a rejection procedure. 
It is trivial to state that in different networks different APs might have 
to be rejected. The rejection strategy applied here in networks A,B,C was 
based on correlation checks. Those parameters which cause thelargest 
correlations with respect to the object point coordinates and to the other 
APs have been rejected. This procedure was found to work quite well and 
it can really be recommended for professional use. 
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What should be considered to be a "high" correlation is still in question. 
In this connection it is interesting to see that the rejection of an AP 
which was correlating at the 90%-level (bl4 in A and B) leads to a precision 
improvement of a factor 1.3. Experience in this matter indicates that in 
close-range photogrammetry an individual AP component cannot be expected 
to improve the results by a factor of 1.3. So the author recommends that an 
AP which has 0.9 or even higher correlations with other decisive components 
of the system s~. 1uld be excluded. 
The relatively small systems in close-range photogrammetry permit computa­
tions, which might not be feasible in aerial triangulation. So apart 
from correlation control the check of a change of the standard deviations 
of all individual object points also becomes possible. Consequently, a 
complete and successful system control is relatively easy to perform, 
thus leading to highly precise and more reliable results. 

4. The internal and external reliability of bundle svstems 

If correctly applied, self-calibration provides for the compensation of the 
systematic errors. Weight estimation is a separate problem, not touched in 
this paper. Consequently, for reliability studies, only the reliability 
of our systems with respect to blunder detection has to be investigated. 
In Grun (6) internal reliability investigations have been carried out 
using the above mentioned synthetic example. It was clearly emphasized 
that in order to obtain reliable systems a four photo coverage should 
be us~d with two bases perpendicular to each other to avoid pure 
epipolar plane observations. 
Here,these internal reliability studies are picked up again but presented 
in greater detail (separation into control and non-control observations, 
indication of the just non-detectable blunders). In addition, external 
reliability studies are added, referring to the same networks and data 
sets. The author is grateful to cand. ing. W. Przibylla, who provided 
many of the results presented in this chapter through his diploma thesis (11). 
Based on the experiences reported in Grun ( 8) (good reliability features 
of "twin ray" observations) the image coordinates of network 3/0/4 are 
here considered to be measured in stereomode (photos 3/0 and 0/4), so that 
all image points of photo 0 are observed twice, thus leading to "twin 
rays". So the complete set o-f rays of network 3/0/4 (CS .•. version C, 
measured in stereomode) is separated into "inner rays" (twin) and "outer 
rays" (single). 
Table 2 shows the internal reliability results. 
Global internal reliability indicators are defined as 

Ri(x) = tr(~) Ri(y) = tr(Q?v) 
n n (14a) 

(14b) 

tr(~), tr(~) .•• subtraces of Qvv, related to x- andy- residuals. 

~XM• ~YM •.• average size of non-detectable blunders in x- andy­
observations 

n ... corresponding number of observations 
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The values V'XM, ilyM are related to cr0=l~m, 6i=4.1, a 0 =0.001, So=0.80. 
The internal reliability measures are subdivided into control and non­
control values, as both types show significant differences between them. 
Additionally, in network 3/0/4 (version CS) the inner and outer ray 
observations are differentiated. 

Table 2: Global internal reliability measures 

Version r 

A 69 
B 69 

cs i.r. 141 --o .r. 
D 135 
E 135 

r ..• redundancy 
i.r •.. inner rays 
o.r ... outer ravs 

Ri(x) 

0.66 
0.66 
0.86 
0.71-
0.76 
0.76 

Control 
Ri(y) 'ilXM. V'yM Ri(x) 

(~m) (~m) 
0. 71 5.2 5.0 0.00 
0. 71 5.2 5.0 0.00 
0.86 4.5 4.5 0.70 

-o-:ir --- 1--- o.z5-4.9 4.7 
0.76 4.8 4.8 0.56 
0.76 4.8 4.8 0.56 

Non-control 
Ri(y) llxM ilyM 

(!lm) (!lm) 
0.45 ..... "" 6.2 
0.44 .., "" 6.2 
0. 71 4.9 4.9 

-o-:68 1--- r--
8.4 5.0 

0.56 5.6 5.6 
0.56 5.6 5.6 

Control observations are reliable in all versions, there is only a minor 
difference between x- and y- observations. The average values for just 
non-detectable blunders are fairly homogeneous, ranging from 4.5 cr 0 to 
5.2 cr0 • 

The reliability values of non-control observations of the individual 
networks, however, differ significantly from each other. The x-observa­
tions of versions A and B are not checked at all, .the y-observations 
can be considered to be of average reliability. 
Things change considerably when a third photo is introduced in a suitable 
location. Although the x -values of the outer rays of version CS are 
still weak (V'xM=8.4cr0 ), fairly good results are obtained for the inner 
ray x -observations (V'xM=4. 9cr0 ) • 

Sufficiently good and homogeneous results in x and y are only achieved 
with the versions D and E, i.e. with the 4 photo arrangements (ilx.~vyM= 
5.6cr0 ). 

The external reliability measures show the effect of a just non-detectable 
blunder onto the solution vector. As indicated bv eouation (8b) the 
blunder ilii is propagated to V'xj by the function- (ATPA)-lATP. So the 
network design, and in this context specially the normal inverse (ATPA)-1, 
has an essential influence on the quality of the external reliability. 
Since this inverse (together with cr 0 2) defines also the precision of a 
system, a direct relation between external reliability and precision 
becomes obvious. For this reason quite different values of external 
reliability can be expected in different networks, even if the internal 
reliability values are identical (compare Tables 2,3, versions D,E). 
Consequently the internal reliability measures may, in general, not be 
sufficient to describe the reliability of a network. For this pur~ose, 
onlv the measures for the external reliability can serve as indicators. 
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To support these statements the effects of all individual just non­
detectable blunders of the networks A, B, CS, D, E (see Table 2) on the 
object point coordinates have been computed. Table 3 shows the results. 
For simplification only the maximum values for VXZ, vrl) are indicated. 
As the effects of just non-detectable blunders have a reasonable statis­
tical basis (derived from hypotheses testing - datasnooping) and since 
they represent error limits (based on probability levels a

0
, S0 ) they can 

advantageously be used as tolerance values. Although standard deviations 
are preferred for use as precision measures among surveyors, they have 
never been accepted by engineers in connected disciplines and much 
confusion in communication has resulted therefrom. 
Another restrictive feature of standard deviations, which makes them less 
suitable for use in practical projects, results from the fact that thev 
are based on the assumption of random errors only. which is often an · 
unrealistic assumption, as practice shows. Now these problems seem likely 
to be overcome by the use of external reliability measures as tolerances. 
Consequently the values of Table 3 are denoted by "tolerances". and 
three types are distinguished: 

- 1st order tolerances: Values for non-control points, caused by 
blunders in observations belonging to these points. 

-2nd order tolerances: Values for non-control points, caused by 
blunders in control observations. 

- 3rd order tolerances: Values for non-control points, caused by 
blunders in observations of other non-control points. 

All measures VXZ, VY have been obtained by assuming one blunder only at 
a time. 

Table 3: 

Version 

A(l/2) 
B(3/4) 

CS(3/0/4) 
D(l/2/5/6) 
E(3/4/7/8) 

External reliability measures for object point coordinates 
(maximum tolera~ces based on a 0 =0.001, S0 =0.80. cr 0 = 1 um) 

1st order tolerances 2nd order tolerances 3rd order tolerances 
VXZMax I VYMax VXZMax I 'YYMax 'JXZMax I 'ilYMax 

(mm) I (mm) (mm) I (mm) (mm) I (mm) 
I I I 

..1 
.... CX> .... CX> 0.58 J. 1.81 0.17 0.69 
.... CX> .... CX> 0.24 0.40 0.05 0.13 
1.45 4.07 0.18 0.37 0.04 I 0.11 
1.81 6.13 0.25 0.80 0.09 0.33 
0.64 

~ 1.30 0.12 0.17 0.02 I 0.07 

Vxz MaxJ.:m. um value J."n X or Z, if both coordinates X,Z are considered Max··· 
together. 

As could be expected, the maximum distortion of object space coordinates 
is always caused by a blunder in the observations of the corresponding 
point (1st order tolerances). Compared to these values the effects of 
just non-detectable blunders in image coordinate observations of control 
points (2nd order tolerances) are relatively small, although large enough 
not to be ignored, especially in the small base versions A and D. 

l) In the following the object point coordinates are denoted by large 
letters X, Z, Y. 
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The maximum values for the 3rd order tolerances are comparably small in 
all networks, however, it can happen that for individual points the 
3rd order tolerances exceed the 1st order tolerances. This means, that 
the effects of non-detectable blunders in observations other than those 
of the point, may exceed the effects of blunders in observations of the 
point itself. 
Comparing A with D and B with E one sees that a doubling of the number 
of photos without changing the size of the bases leads to an improvement 
of the maximum 2nd and 3rd order tolerances by a factor of 2. 
Keeping the number of photos constant, a base enlargement does not 
improve the internal reliability. The external reliability, however, 
is improved significantly (average improvement factors of 3 and 5 for 
xz andy between the networks A and B, D and E). Additionally, the 
values for the X,Z and Y coordinates become more homogeneous. 
Generally it can be stated that with respect to reliability features 
(here related to blunder detection), the networks A and B (2 photo 
versions) are completely failing, as the maximum 1st order tolerances 
result in values close to infinity. 

5. Concluding remarks 

In order to obtain highly precise and reliable photogrrunmetric networks 
a few basic requirements have to be met. These are easy to fulfill 
in practical projects. 
For a long time it has been well known that the use of large bases 
(for complete object coverage mostly connected with convergent photo­
graphy) leads to a much better object point coordinate precision than 
the small base concept. However, precision measures are not of much 
value, if the reliability of a network is bad. 
In order to get practical network results closer to theoretical precision 
measures, primary efforts must be directed towards the compensation of 
systematic image errors, which can preferrably be achieved by self-calibra­
tion. The extension of the bundle model by additional parameters, however, 
more.or less changes the network's precision structure. Further, to avoid 
a serious deterioration of the precision of required components (e.g. 
object point coordinates) those additional parameters which weaken the 
system must be excluded. In close-range systems this can be achieved by 
correlation control and variance check, as presented in this paper. 
Equally important is a design of networks, which provides for good 
blunder detection properties. To obtain sufficient redundancy for blunder 
control at least a fourfold photo coverage should be aspired for. Ray 
arrangements leading to one common epipolar plane only have to be avoided. 
Although the internal reliability measures are useful indicators for a 
network's reliability properties (especially in extreme cases), a compre­
hensive reliability control can only be performed by analyzing the external 
reliability. External reliability measures have a close relation to 
precision measures. This permits the general one-way statement to be 
made: If a network is designed with excellent external reliability 
features, its precision can also be considered to be outstanding. Network 
E of our examples has such properties. 
In addition, external reliability measures can be regarded as tolerance 
values, which enable easier communication between photogrammetrists 
and the users of their products, than was possible in the past. 
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