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ABSTRACT 

An overview is presented of the current state of automatic image pat
tern recognition as applied to remote sensing of the earth ' s resources. The 
framework for the discussion is four key aspects of the remote sensing prob
lem: scene information content, characterization of scene information, in
formation extraction methods, and the net value of extractable information . 
Outstanding problems and the prospects for future developments are surveyed . 
The impact of increasingly complex data bases and the rapidly evolving digi
tal computer technology are highlighted . 

INTRODUCTION 

In the mid-1960s, pattern recognition was introduced as a means of ana
lyzing multispectral image data collected by multispectral remote sensing -
at that time by multispectral scanners aboard aircraft . It was quickly de
monstrated that when the ground covers of interest were spectrally discrimi
nable (as many as 15 to 18 spectral measurements could be made on each pix
el), pattern recognition provided an automatic means for classifying the 
data [1]. Automation was deemed essential because of the large volumes of 
complex data produced by remote sensors . In the years that followed, how
ever, two developments in remote sensing have challenged the pattern recog
nition enthusiasts to extend the capabilities of this approach : 

1 . The desirable applications of remote sensing have begun to involve 
much more subtle distinctions in terms of spectral differences . 

2 . The principal sensor of interest , the Landsat multispectral scanner 
(MSS), is relatively limited in spectral range and both spectral and spatial 
resolution . 

The challenge has been well met, however , and recent years have seen the de
monstration of important and large-scale earth resources monitoring applica
tions based on pattern recognition analysis of remote sensing data [2,3] . 

What is the state of the technology now and what are the prospects for 
future developments? As progress continues to be made in the sister tech
nologies concerned with information systems and digital computers, the po
tential for developing ever more powerful and useful pattern recognition me
thods for remote sensing image processing continues to expand . A survey of 
the frontier follows . 

Components of " The Problem" 

It is helpful to organize consideration of the overall remote sensing 
information extraction problem into four major components . We can thereby 
focus our attention on manageable pieces of the total problem, even though 
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it is necessary to keep in mind that the interactions of the components are 
of major significance in addition to the charac t erist i cs of t he components 
themselves . 

The components to be cons i dered are as follows : 

l . The amount and nature of actual scene information con t en t. 

2 . Characterization and measurement of available scene information. 

3 . Information extraction methods . 

4 . The value of extractable information. 

It will be helpful to cast the discussion of these components in terms 
of a specific application scenario to make the discussion more concrete . 
" Crop inventory " or "commodity production forecasting " wil l be the focus be 
cause this application pr oblem is well-defined , fairly well understood , mod
erately complex, and an application to which the author has had considerable 
exposure . 

The Application Scenario 

The application problem is to use multispectral remote sensing as a 
primary source of data fo r estimating crop production on local, national, 
and global levels. Other data inputs, collectively referred to as ancil 
lary data , are used to the extent t hey are avail able and can improve the 
production estimates without unduly increasing the cost of obtaining the 
estimates . Examples include meteorological data, agronomic variables such 
as soil type , and relevant historical information . 

Measures of the quality of a product i on estimate include its accuracy , 
precision , and reliability, its timeliness , and the cost of obtaining it . 

Crop production can be estimated by means of the following model (due 
to Dr . Donald A. Hol t , Department of Agronomy , Purdue University) : 

Crop Product i on Crop Acreage x "Maximum Yi eld" x Weather Factor 
x Episode Facto r x Management Factor. 

Crop Acreage is the gr ound area occupied by a viable crop of a given 
species . " Maximum Yield" reflects the maximum y i eld potential of the 
planted area based on climate and agronomic variables influencing soil fer 
tility . The Weather Factor accounts for meteor ological deviations from the 
ideal that would result in Maximum Yield . The Episode Factor accounts for 
events , such as hail storms , disease or floods , which may have a devastat 
ing effect on yield . And the Management Factor reflects the impact of eco 
nomic and/or technological developments which could influence product i on . 
For example , a new variety of a wheat may be found to yield more than the 
" Maximum Yield ;" or a market glut may result in a portion of the crop being 
plowed under rather than harvested . Crop acreage can be provided , for many 
c r ops , by classifica t ion of remote sensing data [ 4 ]. Remote sensing can 
also provide some information useful in determining the other factors of 
crop pr oduct i on . 

One poss i ble way of storing and processing the data required for thi~ 
crop production model is suggested by Figure 1. In Figure 1 (a) , th.e vari
ous factors a.re shown as "maps " which could be stored as digital grip maps . 
Such maps then become layers in a data base , Figure l(b), from which the 
production fo r each crop of int e r est may be systematical l y extrac ted . 

In practice , it would probably not be efficient to store all of the 
relevant factors as grid maps , but , in any case , the data base formulation 
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would maintain the spatial correspondence , or "registration," among whatever 
forms of storage were utilized . It is convenient to visualize the data base 
as shown in Figure l(b) . 

Now we return to the four major problem components introduced earlier 
and examine the state of the technology relative to each . 

SCENE INFORMATION CONTENT 

Given all feasib l e sources of data about a scene of interest , how much 
information about the scene is actually contained in the data? 

Electromagnetic sensors , passive and active , are the principal data 
sources considered in remote sensing , but there are many other possibilities 
extending even to ground observations and historical data , for example . The 
various sources have differing degrees of resolution , accuracy , precision , 
and reliability . In terms of the application scenario , even though the re
mote sensing data is collected on a (relatively) uniform and high resolution 
grid, this will certainly not be the case for related soil maps , topographic 
maps, and meteorological data . 

Ideally, it would be desirable to be able to measure the total amount 
of information about a scene contained in all available data components . 
This is bound to remain an elusive ideal, however . For one thing , " informa
tion in the Shannon (signal representation) sense, " for which various quan
titative characterizations are known , is scarcely relevant when the data an
alysis objective is classification . Effective measures of information which 
are based on discriminability of classes of interest, necessarily depending 
on the identity of those classes, have not yet been established , although 
some good progress has been made [5 , 6]. 

Good laboratory work can determine to a considerable extent how much 
information is available under idealized conditions , and this is an essen
tial ingredient in every aspect of practical remote sensing, from sensor de
sign to mission planning to data analysis . The " laboratory" may be test 
plots on an experimental farm , typical forested or urban settings , etc ., and 
the "laboratory " instruments may be bench-mounted, vehicle- mounted or even 
airborne . The point is that data gathered under carefully controlled and 
well- documented circumstances can be of great value in demonstrating the 
best that can be done with remote sensing . Fortunately , the value of this 
approach is being more widely recognized and supported [7 ]. But more basic 
work needs to be done to better model the effects of corrupting factors such 
as atmospheric and sensor noise and the effects of geometric registration 
errors . 

INFORMATION MEASUREMENT AND REPRESENTATION 

For a specified data base and an associated application, what are the 
characteristics or "features" of a scene that, through appropriate process
ing, may be expected to yield the desired information? Again referring to 
the application scenario, the spectral measurements on each pixel may not be 
adequate to discriminate among important crops , much less crop or environ
ment conditions which may substantially impact their yield . Spatial and 
temporal variations in the scene can carry essential information as can topo 
graphic data in areas exhibiting significant variation of elevation . The 
" raw" data , assumed here to be spectral measurements of the scene , convey 
relatively rudimentary information about the scene if considered only a 
pixel ( " picture element") at-a-time . 

As noted earlier , when the multispectral scanner became available for 
civilian remote sensing applications during the 1960s , the machine process 
ing and pattern recognition research focused at first on the pixel-by- pixel 
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spectral measurements . The spatial characteristics of the data were largely 
ignored because it was not known at that time how to represent them in the 
computer and the dimensionality of the data was already in excess of what 
could be dealt with using the available computer technology . 

While the earth resources part of the remote sensing community waswork
ing on automatic extraction of spectral information, the military community 
was concentrating on automation of spatial analysis , more closely allied to 
the traditional military use of manual photointerpretation . More recently 
we have begun to see each of the two camps drawing on lessons learned by the 
other ; spatial and spectral features are beginning to be used jointly in 
the analysis process . Significant progress in the characterization of tex
ture , shape, and structural relationships is appearing in the image process
ing literature. While this facilitates the representation of such features 
in the machine, relatively little progress has been made in incorporating 
the features into the analysis process , i . e ., learning how they distinctive
ly characterize classes of interest. 

Temporal scene variation has long been hypothesized as having great po
tential as a source of discriminatory information. Availability of periodic 
observations from Landsat has provided the opportunity to test this hypothe
sis, once the capability was developed to adequately register data from tem
porally separated passes of the satellite [8]. The most direct approach to 
analyzing multitemporal data is to create " stacked" data vectors by simply 
concatenating sets of measurements from successive observations of the site . 
The same analysis methods applied to unitemporal data may then be applied to 
the multitemporal data . This raises a number of issues, however . First , it 
is not yet known with any generality how sensitive the analysis methods are 
to the inevitable registration errors, which may range from a fraction of a 
pixel to several pixels , depending on characteristics of the remote sensing 
data and the methods selected for performing the registration . The effects 
are certainly significant in highly variable regions and at object bounda
ries in the data . 

Second , the substantial increase in the dimensionality of the analysis 
task raises the complexity and the cost of the analysis and may even require 
the application of dimensionality reduction methods . A number of interest
ing methods for dimensionality reduction have appeared in the recent litera
ture but have yet to be tested [ 6] . 

And finally, there is evidence suggesting that simple "measurement 
space" features are not the most information-bearing characteristics of mul
titemporal data . It has been found, for example, that temporal trajectories 
of "greenness" and "brightness" features are better for discriminating among 
some crop species [9]. This is certainly not surprising and it reinforces 
the notion that important information about earth resources may yet be ob
tainable from remote sensing data through the investigation of rather com
plex transformations of the raw sensor data . 

INFORMATION EXTRACTION 

Once the information- bearing features are known, what techniques are 
necessary to extract effectively the needed information? Given the charac 
teristics of the data base and the application, how can the class of admis 
sible (potentially useful) information extraction procedures be described? 
Of the admissible procedures , which are feasible in the context of existing 
technology? Of the feasible procedures, which of these may be optimal from 
both cost and performance viewpoints? What cost/performance tradeoffs must 
be accommodated? 

For more than a decade , statistical pattern recognition techniques have 
been applied to remote sensing data on a pixel- by- pixel basis . The proce-
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dures incorporating this approach have become increasingly sophisticated , 
with particular attention being given to assisting the data analyst i n deve
loping a valid characterization of the multivariate measurement space based 
on "ground truth" which , for reasons of economy, is as limited in e x tent as 
possible [ 10] . Implementations of the basic statistical decision process 
have a l so become increasingly sophisticated , primarily in order to increase 
the speed of processing and enable larger data sets to be processed in as 
timely and economical a fashion as possible . Examples of such implementa
tions include table-lookup methods for general- purpose computers and the use 
of parallel processing sys t ems , such as ILLIAC IV [ 11] and STARAN [12], and 
array processors which can be appended to general - purpose host computers [13] . 

Aside from the texture and t emporal features mentioned in the prev i ous 
section , which generally have been used in addition to or in place of the 
basic spectral features, until recently very little progress has been obser
ved toward utilizing other information-rich features of the remotely-sensed 
scene . Spatial information in the remote sensing data and numerous other 
forms of information available from digitized maps , etc ., have been utilized 
in manual interpretation of the data , but new approaches to image pattern re
cognition have not been available to enable the computer to make effective 
use of such information sources . 

The basic maximum-likelihood decision rule has now been extended to ap 
ply to classification of multi-pixel " objects " [ 14] , i.e., regions with re
latively homogeneous spatial and spectral features . The objects may be lo
cated by manual means or by automated scene segmentation techniques . When 
the objects are large compared to the resolution of the sensor and the seg
mentat i on procedure is effective , the object classifier greatly speeds the 
processing and improves the accur acy of the results . This approach has not 
been widely applied to Landsat data because the resolution of the Landsat 
multispectral scanner i s not sufficient to result in large objects . However , 
satellite sensors under construction , both scanners and linear array ( " push
broom") devices and a l so aircraft- borne sensors will produce data of suffi
cient resolution to warrant the segmentation/object classification approach . 

The Bayesian decision strategy for classification can be extended in a 
different fashion to incorporate neighborhood information about a pixel to 
be classified [15 , 16] . Taking this approach, a neighborhood of fixed size 
and shape is defined . A probability distribution characterizing the l ikeli
hood of observing all possible contexts (neighboring class configurations) 
is used together with the usual class- conditional probabilities to classify 
each p ixel . It has been demonstrated that this classifier model can be 
quite effective in improving classifier accuracy provided the context dis
tribution can be adequately estimated . (Numerous methods fo r performing 
this estimation are proposed . ) 

In terms of the application scenario , both of the foregoing methods for 
classification using contextual information have been shown quite effective 
for imp r oving the accuracy of classification . 

Still more general spatial relationships can be utilized through appli
cation of syntactic methods for pattern recognition and image analysis 
[17 ,18]. The approach is to develop " pattern grammars " analogous to the 
grammars used to describe natural languages or programming languages . The 
grammars aid in assessing the " meaning" of an image based on the structural 
relationships among patter n pr i mitives . Thus , for example , roads may be 
described and recognized as strings of pixels class i fied as " blacktop" or 
"concrete"; lakes may be discr i minated from rivers based on structur al re
lations of " water " pixels , and so on . While some interesting results have 
appeared based on this approach , much research remains to be done before 
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syntactic image analysis will be widely applicable in practice . 

The useful context related to applications of remote sensing data is not 
limited to the remotely sensed inmge alone . Ancillary data may be used in 
conjunction with r e mote sensing data , e ither as part of the pattern recogni
tion operations based on the remote sensing data or in subsequent post-pro 
cess i ng steps . Fo r example , topo graphic variables have been used to signi
ficantl y improve the e x traction of fo r est r y r esources information fr o m Land
sat data [19] . The application scenario sketched ear l ier in this paper re
presents another potential application of this general conc e pt which remains 
to be exploite d . It may be argued (and will be) that the development of 
general and effective techniques which provide for the coordination and joint 
analysis of multiple data sources and types represents one of the most impor
tant areas for remote sensing data processing and anal ysis for the foreseeable 
future . 

INFORMATION UTILIZATIO N 

Is the extractable informat i on of sufficient value so that someone is 
will i ng to pay the cost of obta i ning it? 

There are a number of important issues embedded in this ques t ion . 
First , what can be done to mi nimize the cost of obtaining the information? 
Cost might be reduced at many different stages , from data acquisition 
through preprocessing and on to i nformation ext r action . 

What can be done to maximize the value of the info r mation to the con
sumer? Improved a c curacy and reliabilit y obviously enhance the value of the 
information , as does timeliness for most applications . Users need there
sults available in a convenient form , often a form which per mits reformatting 
or resummarization for multiple uses . 

Together with the commitment , recently taken by the U. S . government , to 
provide multispectral remote sensing date on an operational basis , there is 
an urgent need to assess what form that data should take . Widespread use of 
the data stands to considerably reduce its cost . But obta i ning such use 
may entail substantial initial investment in d evelopment to provide "univer
sally" useful data . The sensor systems must be capable of providing data 
virtually on command and with spatial and spectral characteristics well 
suited to the application(s) at hand . 

Happily the computer and information systems technologies are evolving 
rapidly in directions which promise to reduce the cost and improve the time
liness with which information can be extracted f rom remote sensing data . As 
computers and memory devices are becoming faster and larger, the co s t of 
processing power and memory are continuing to drop . It is becoming realis 
tic to think of hav i ng very large and complex data bases on line for pro
cessing . Now, how can they be used most effectively? 

WHERE TO FROM HERE? 

Whi ch brings us to the final point of this paper, namely , directions 
for the future . As a lready suggested , remote sensing data is going to prove 
most useful when it serves as one or mo r e components of a mu l tifaceted data 
base and information system . Methods for effectively analyzing the data in 
such a complex environment do not yet exist . The methods which have been 
developed for analyzing only remote sensing data are not trivially e x tend
able to meet this need . 

Figure 2 casts the problem again in terms of the application s c enario 
involving crop production forecasting . The data analysis methodology im
plied by the righthand side of the figure might well be expected to have 
the following characteristics: 
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1 . The data bas e can be add r essed at any time to produce an informa
tion update based on the currently resident data . 

2 . The data types contained in the data will be considered on a 
weighted basis , the weighting facto r s based on a measure of "marginal in
fo r mation content" and the estimated reliability of each available data 
attribute . 

3 . The information extraction capability will suffer, at worst , 
" graceful degradation" in the face of missing or unreliable data . 

4 . The results of any information extraction process will always in
clude a measure of the quality of the information produced . Accuracy , pre
cision, reliability and timeliness are per tinent in deriving such a quality 
measure . 

It is possible to conceive of a gener alized hierarchical form of dis 
c r iminant analysis applicable to such a situation, but the deta i ls of such 
an approach are still very much topics for research . 
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