
DESIGN AND IMPLEMENTATION OF AN OBJECT-ORIENTED 
PHOTOGRAMMETRIC TOOLKIT 

Chris McGlone, Ph.D. 
Loral Fairchild Systems, Inc. 

300 Robbins Lane 
Syosset, NY, USA 11791 

ISPRS Commission II 

ABSTRACT 

This paper describes an object-oriented softcopy photogram­
metric toolkit, designed to allow the use of different types of 
images, such as frame, panoramic, strip, and satellite, with­
out modifying applications code. Addition or modification of 
new sensor models requires no modification of existing appli­
cations software. The orientation module can simultaneously 
perform a least squares orientation and point coordinate de­
termination on images of different geometries. Written in 
C under the UNIX operating system, the toolkit is portable 
across platforms and has been integrated into soft copy image 
exploitation systems. 

Key Words: Digital systems, Photogrammetry, System de­
sign, Workstation 

INTRODUCTION 

An ideal soft copy image exploitation system would be able to 
exploit images with greatly differing geometries-line scan­
ners, strip (pushbroom), panoramic, and satellites, as well as 
digitized film-singly or in mixed combinations, with rigor­
ous results. This goal has yet to be completely attained for 
systems currently in use, due to conventional software archi­
tectures which typically require modifications to the entire 
body of code each time a new sensor model is added and 
which require every application to have explicit knowledge 
of all types of images. As a consequence, software production 
and maintenance costs are high. 

The photogrammetric toolkit has been designed as an answer 
to these problems. It consists of a set of sensor models, 
arranged in a class hierarchy by imaging geometry, and a set 
of application routines designed to work with generic sensor 
model objects without knowledge of the internal workings 
of the model or geometry of the sensor. The addition or 
modification of sensor models has no effect on other sensor 
models or on the applications routines. 

To ease integration of the toolkit into various systems, the 
sensor models and applications do not directly communicate 
with the user interface; instead, they rely on the system in 
which the toolkit is embedded to pass commands and data 
and to return results to the operator. Since the toolkit is not 
rigidly tied to a particular user interface, development and 
maintenance costs can be amortized across many projects. 

• Currently at Digital Mapping Laboratory, School of Computer Sci­
ence, Carnegie-Mellon University, Pittsburgh, PA, 15213. 

334 

DESIGN GOALS 

Requirements were analyzed in terms of necessary pho­
togrammetric applications, accuracy specifications, and soft­
ware engineering considerations. The final requirements 
were: 

• The system must handle different types of sensor ge­
ometries, including frame, panoramic, strip, line scan, 
satellite, and radar. 

• The system must be able to use, input, and output 
results in standard coordinate systems-geodetic (lat­
itude, longitude), geocentric, UTM, and local vertical. 

• The system must work with a flat, spherical, or ellip­
tical description of the earth, with specifiable ellipsoid 
parameters. 

• The system must not contain hidden approximations 
which degrade the accuracy of the solution or which are 
specific to a certain sensor or imaging scenario. 

• The system must support standard photogrammetric 
operations such as positioning, 2D and 3D measurement 
and multiple-image resection and intersection solutions. 
The addition of other applications must be done with a 
minimum of effort. 

• It must be usable as a component in applications such 
as orthophoto generation or perspective transformations 
and in research applications. 

• The system must be easily transportable between sys­
tems. Instead of machine-specific and interface-specific 
routines, widely-accepted software standards such as the 
C language, the Unix operating system, and the Motif 
user interface must be used. 

Design of the toolkit was influenced a great deal by work in 
object-oriented graphics programs, especially the M-BLORB 
modeling package implemented at the Schlumberger Palo 
Alto Research Center by Kurt Fleischer [Fleischer, 1987]. 
One of the few published attempts to deal with different im­
age geometries in photogrammetric systems was described in 
[Molander, et. at., 1987J. Their approach applied the same 
mathematical model to frame, panoramic, and strip imagery, 
treating all images as composed of framelets taken at discrete 
time intervals. The orientation parameters for each framelet 
were determined from time-indexed lookup tables. While 
this approach followed some of the philosophy of object­
oriented design, it did not allow for the use of completely 
different orientation methods for sensors such as radar which 
might require them. 



TOOLKIT STRUCTURE 

The toolkit is divided into modules, each of which is con­
cerned with an object or a related set of functions (Figure 
1). The fundamental objects of the toolkit are worlds, points, 
cameras, and images. Each sensor model consists of a cam­
era and an image object, related to its place in the hierarchy 
of sensors, along with functions which perform the generic 
operations used by the applications. The applications are 
written solely in terms of these generic operations. A pack­
age of utilities for operations such as coordinate transfor­
mations and units conversion is used in writing the sensor 
models and applications and by the external system. 
The world object contains the world parameters for use in 
computations, such as ellipsoid parameters, and the choices 
for input and output coordinate systems, input and output 
units, tick mark spacings, etc. 
A point object represents a single point in the world. World 
coordinates in the various coordinate systems are stored as 
calculated or input, with coordinate conversions performed 
as needed. Image coordinates on each image the point ap­
pears on are also stored, along with stochastic information. 
Cameras and images are separate objects, although they are 
treated together. The camera object contains information 
about the sensor, while the image object refers to the spe­
cific event when an image was made and contains position 
and orientation information. A sensor model is defined by 
a camera object and an image object, along with the rele­
vant functions. These functions can be inherited from other 
sensors or specially written. 
Sensors are arranged in a shallow hierarchy, (Figure 2) with 
the root of the tree being a proto-image, the next level being 
sensors with generic geometries (frame, panoramic), then the 
next being specific sensor types. Generic functions can be 
inherited down the tree or specified for each sensor. 
Generic functions (or methods) for sensor models include: 

• seLvalues. Sets the orientation and position values for 
the image. 

• sho'd'Lvalues. Displays the current image values. 

• image_to_world. Transforms a set of image coordinates 
into a set of world coordinates in the specified coordinate 
system. 

• world_to_image. Transforms a set of world coordinates 
into the corresponding image coordinates. 

• read_image_from_file, write_image_to_file. These 
functions handle the input and output of image infor­
mation. 

• image_to_subimage and subimage_to_image. Perform 
the transformation between displayed subimages or 
reduced-resolution images and the original image. 

• calc_partials, update_parameters. Used in the re­
section calculation to calculate partial derivatives and 
to update the parameter approximations. 

Lens distortion and atmospheric refraction correction func­
tions are provided as utility routines, with each sensor model 
using the correct form with its own parameters. 
Application routines call the generic functions without know­
ing the inner workings of the sensor models. While this some­
times requires writing the application in a way that may be 
less intuitive, once done it does not have to be modified for 

335 

new sensor types. For example, for most sensors, calculating 
the size of a pixel on the ground can be done simply using the 
focal length, the detector size on the imaging array, and the 
distance to the ground. However, some electro-optical sen­
sors overs ample or undersample the scanned output so that a 
pixel does not correspond precisely to the detector size. This 
application was written using the image-to-world function 
called for adjacent pixels, then calculating the distance be­
tween their projections in ground coordinates. 

IMPLEMENTATION 

The toolkit is currently implemented in the C program­
ming language, with the basic objects represented by struc­
tures. The generic functions such as image_to_world and 
world_to_image are attached to slots in the structures. 
Pointers to image objects are passed as pointers to void; 
structure slots are addressed by casting the pointer to 
proto_image or to the specific type of image in functions 
internal to the sensor model. 
The sensor models and application routines do not assume 
any user interface or image display hardware or software; all 
user communication and ima.ge handling is the responsibility 
of the system in which the toolkit is embedded. Input pa­
rameters and image coordinates selected by the operator are 
placed in the appropriate structures and passed to the ap­
plications functions. Calculated results such as coordinates 
are returned in the objects passed to the routines, and a.re 
also formatted as strings returned from the applications. By 
separating the interface issues in this wa.y, the system can be 
ported between systems without modification of the code. 
The toolkit is currently running on Sun workstations un­
der Sunview, and on the EO-LOROPS Ground Exploita­
tion Station (VAXstation based) with the interfa.ce written 
in DECWindows. The next target platform is the Silicon 
Graphics with the interface to be written in Motif, an X­
Windows based user interface. 

Sensor models 

Models describing frame mapping cameras and the GD HIAC 
frame camera have been implemented, along with a model 
for the KA-93 film panoramic camera and the EO-LOROPS 
(Electro-Optical-Long Range Oblique Panoramic) electro­
optical sector-scan panoramic camera. Models to be added 
include the ATARS (Advanced Tactical Airborne Reconnais­
sance System) F979L and F979M strip sensors built by Lo­
ral Fairchild, SPOT and LANDSAT satellite sensors, IR line 
scanners, and synthetic aperture radar. 

Applications 

Current and future applications routines include: 

It Calculation of ground and image coordinates. The sys­
tem calculates ground coordinates from given image co­
ordinates or calculates image coordinates from given 
ground coordinates. Ground coordinates can be input 
or output in geodetic (latitude-longitude), UTM, geo­
centric, or local vertical coordinate systems. 

• Monoscopic height calculation. If the top and bottom of 
a vertical object are visible, an approximate height can 
be calculated and output in the specified linear units. 



• Horizontal distance calculation. Horizontal distances 
are output in user-specified linear units. 

• Area calculation. The area within an arbitrary polygo­
nal region is calculated and output in user-specified area 
units. 

.. Coverage calculation. The coordinates of the corners 
and center of the image can be calculated and displayed 
in any coordinate system. 

• Overlay coordinate tick marks. Tick marks in lat-Iong 
or UTM coordinates, with user-specified spacings, can 
be overlaid on the image. 

CD Pixel information. The system will calculate the ground 
sampled distance in x and y, the slant and ground ranges 
to the point, and the depression angle at a given point 
in the image. 

• Coordinate and units conversion. The system can work 
with geodetic (latitude-longitude), geocentric (earth­
centered cartesian), Universal Transverse Mercator 
(UTM), and local vertical coordinate systems. All inter­
nal calculations are done in geocentric or local vertical 
coordinate systems, with coordinate conversions done 
automatically as required. The operator can input co­
ordinates or obtain output results in whichever coordi­
nate system he desires. A separate function allows the 
operator to input coordinates and convert them to any 
other system. 

Input and output units are also user-specifiable. An­
gles may be given in radians, decimal degrees, degrees­
minutes-seconds, or grads. Linear units are meters, feet, 
kilometers, miles, and nautical miles, while area units 
are square meters, square feet, acres, and hectares. 

.. Simultaneous orientation determination. In many cases 
the position and orientation data for an image is un­
known or not known accurately enough. A resection 
solution must then be run using ground control points 
with known coordinates to obtain better values for the 
orientation parameters. In the converse problem, inter­
section, the coordinates of ground points must be deter­
mined from two or more known images. A third problem 
is performing relative orientation between two or more 
images, without any known ground coordinates. In the 
most general case, a mixture of known, unknown, and 
partially known points and images may be adjusted. 

A general simultaneous orientation solution has been 
implemented in the toolkit which addresses these sepa­
rate problems using the same program. The type of solu­
tion is implicitly selected by the choice of weights for the 
image coordinates, ground coordinates, and image ori­
entation parameters. The orientation solution can use 
multiple images from any modeled sensor or combina­
tion of sensors. For instance, if overlapping panoramic, 
frame, and satellite imagery of a given area exist they 
can be combined in the same solution, thereby obtain­
ing better results than if each had been resected sep­
arately and requiring fewer total control points. Tie 
points, common points without known coordinates iden­
tifiable on more than one image, can also be included to 
strengthen the adjustment. 

.. Positioning precision estimation. The precision (stan­
dard deviation) of ground positions or measurements is 

often of interest. Error propagation results are available 
as an after-product of the orientation solution. 

CD Image point geometry and precision simulation. It may 
be desirable to estimate the location of ground points 
in an image or the precision of ground point position­
ing before an actual mission is flown. The image point 
simulator takes point world coordinates and generates 
sets of image coordinates which can be used in the re­
section procedure to estimate the precision of the image 
and point location for that particular geometric config­
uration. 

Interactive multiple image applications for the toolkit, such 
as stereo display and exploitation or coordinated viewing of 
non-stereo imagery, depend upon the user interface and the 
image display system. The interface driver is responsible 
for accepting operator input in mono or stereo, calling the 
proper applications to calculate image or world coordinates, 
and displaying the results. 

Outline of a typical application 

A typical application begins by creating the image object or 
reading it from a file. The routine which creates the object is 
the one routine in the system which must be modified when 
a new sensor model is added. A "create-yourself" method 
will not work, since the object does not exist until it's cre­
ated but can't create itself until it exists. To get around 
this, the creator/reader can either create an object of the 
specified type or reads the type as the first field of the file 
containing the sensor's parameters. Once the object is cre­
ated, the set_values and read_irnage_frorn_file methods 
are available. 

An interesting application is the resection module, which 
works with multiple images of mixed types. Resection be­
gins by allocating the solution matrices, which must be di­
mensioned according to the total number of unknown ori­
entation parameters. This total is obtained by adding the 
nbLparameters fields of each object. If approximations for 
point coordinates are needed, they are generated using the 
irnage_to_world function for that sensor. The least squares 
solution requires the generation of partial derivative matrices 
with respect to the orientation parameters for each ima.ge. 
The calc_partials method returns a matrix of dimension 
2 by nbLparameters, which is used to form the portion of 
the normal equations corresponding to that image. 
Once each image has added its contributions to the normal 
equations, the equations are solved and parameter correc­
tions are obtained. Each image's parameters are updated 
by calling its update_parameters method, which adds the 
deltas, recalculates the orientation matrices, and performs 
any other required updates for that sensor. The resection so­
lution iterates until the solution converges, when error prop­
agation can be calculated if desired. 

FUTURE DIRECTIONS 

Implementation, integration, and testing has confirmed the 
basic approach, revealed some problems, and shown further 
extensions and a.pplications of the concept. Some of these 
are discussed below. 

336 



Issues revealed 

The toolkit has thus far fulfilled its design goals. The first 
integration into a deliverable image exploitation system went 
well. Two sensor models used in generating demonstration 
results for a proposal were quickly written, tested, and used. 
An unfortunate limitation on the toolkit was the require­
ment that it be written in C, necessitating the simulation of 
object-oriented facilities that other languages such as C++ 
already have. Languages such as C++ or Lisp with CLOS 
would have provided a much more powerful and efficient de­
velopment environment. 
Execution efficiency has not been a problem, given that the 
toolkit has needed to work only at interactive rates in re­
sponse to operator input. If it were used as part of an 
automated system such as an orthophoto generator some 
optimization would be desirable. One of the main effi­
ciency issues is the "granularity" of the methods-allowing 
external callers to use only top-level functions, such as 
image_to_world, makes the interface clean but may require 
unnecessary re-computation of intermediate results when a 
large number of points from the same image are calculated. 
To optimize execution time, some methods may have to be 
split into sub-methods. 
As noted before, the inheritance tree for sensor classes is 
relatively shallow (Figure 2). Multiple inheritance would 
have been useful, but was not implemented. 
There is no reason that single-image applications should nec­
essarily be written independent of the sensors. These could 
better be written as methods for each particular sensor. Only 
multiple-image applications need to be blind to the internal 
workings of the sensor models, since they may have to deal 
with two different types of sensors at the same time. 

Potential enhancements 

An interesting possibility is the inclusion and utilization of 
"sensor models" of things that are not normally considered 
sensors. For instance, a raster image of map can be con­
sidered an image with the projection functions defined by 
an orthographic projection. Orthoimages can be treated the 
same way. 
With the addition of functions to get and set the image value 
(intensity) at a given 10 cation, the toolkit could be used as 
the basis for a image geometry transform system. Given an 
input image and an output image of any specified geometry, 
the program would consist of a simple loop over the coverage 
of the output image: 

1. For each pixel in the output image, use image_to_world 
to calculate its world coordinates. 

2. For each set of world coordinates calculated above, use 
world_to_image on the input image to get the input 
image coordinates corresponding to it. 

3. Get_image_intensi ty on the input image at the calcu­
lated image coordinates. 

4. Set_image_intensi ty on the output image to the in­
tensity of the input image. 

Boundary conditions and sampling considerations would 
have to be taken care of, but otherwise the implementation 
is trivial. 
An "image" consisting of a computer-graphics representa­
tion of a scene could also be used, either a previously 

337 

rendered scene or it could be rendered as required. The 
image_to_world function would be defined as intersecting 
the ray defined by the specified pixel with the models or 
background. The geLimage_intensi ty function would be 
defined as either getting the rendered intensity values or else 
performing the rendering using a light source specified by 
the world object. This type of "image" would be ideal for 
perspective transform operations. 
Applications in non-photogrametric systems have also been 
considered. For instance, sensor performance prediction 
models often require geometric information about the sen­
sor. Use of the toolkit would allow the performance model 
to be independent of knowledge of the particular sensor. 

SUMMARY 

The photogrammetric toolkit, built using object-oriented 
programming techniques and industry standard software 
packages, can be easily integrated into image exploitation 
workstations and provides rigorous modeling of a wide vari­
ety of sensors. New sensor types can be added with a mini­
mum of effort and with no modification of existing applica­
tions code, contributing to low software maintenance costs 
and to system flexibility. 

References 

[Fleischer, 1987] Fleischer, K., "Implementation of a 
Modeling Testbed," Association for 
Computing Machinery SIGGRAPH 
1987 Course Notes, Volume 14. 

[Molander, et. al., 1987] Molander, C., Moraco, A., and 
Houck, D., "A Numerical Pho­
togrammetric Model for Software 
Applications", Proceedings of the 
A merican Society for Photogmm­
me try and Remote Sensing Annual 
Convention, Vol. 2, 1987, pp. 284-
292. 



user interface 

applications 

sensor models 

utility routines 

Figure 1: Toolkit module structure. 

proto-image 

frame panoramic strip satellite 

mapping GD HIAC EO-LOROPS KA-93 F979L F979M LANDSAT SPOT 

Figure 2: Sensor model hierarchy. 

338 


