
IMPLEMENTATION OF OBJECT ORIENTED GIS USING FORMAL DATA 
STRUCTURE WITH PLANAR TOPOLOGY - SOME CONSIDERATIONS. 

Hongguang Yang and Wolfgang Reinhardt, Munich/FRG 

Abstract: 

This paper is intended to characterize how an object oreinted 
model for Geographical Information System (GIS) of new gene­
ration may be designed and realized. Special emphasis will be 
laid on the data structure aspect. Design methodes, on the one 
side used specially for topological structuring of spatial data, and 
on the other side used generally for object oriented software en­
gineering will be considered here. As a bridge combining the ap­
plication requirement and software engineering methode the 
Fornal Data Structure (FDS) from the GIS theory of Molenaar is 
quite suitable. 

It will be assumpted that the reader has been already confronted 
with topological structure of spatial data and one of the Mole­
naar's papers about the FDS. 

Key Words: Formal data structure, 
Object oriented model, Planar topology. 

I. Introduction 

Nowadays GIS must possess a planar topological structure over 
its spatial data so that spatial analysis or spatial query of Geo­
graphical Information are supported with an acceptable perfor­
mance, or even possible. 

A history GIS which existed before this knowledge is well 
known shows often the problem that planar topological data 
structure can hardly re-implemented because at the begin of the 
system design data topology were not taken into consideration 
enoughly. Even a re-implementation of planar topological struc­
ture is possible, re-structuring of existing enormous data set and 
re-design of processing algorithms are necessary which would 
be very work -consuming. 

The design and realisation of a new generation GIS is subjected 
not only to the essential requirement from topological aspect of 
data structuring, but also from software engineering methode of 
object oriented design and programming. 

There is yet no standard methode to implement planar topology 
for a GIS to make data and algorithms portable in a meta-level, 
between different dates (evolutional aspect) and systems 
(common use of data). In the practice every GIS manage the 
spatial and non-spatial data at its own way and in different data­
base model (relational or network). The multiple use for chan­
ging applications within one GIS and common access of data 
from differnt GIS are subjected to very strong restrictions. 

151 

The planar topological structure of spatial data has taken its 
standard form, originated from the DIME and succeeded by 
TIGER (Boudriault 1987). The advantages have been shown in 
last years contineously. Nevertheless no practicable and widely 
acceptable methode do exist to make it possible to implement a 
planar topological structure in an object oriented system envi­
ronment. 

The Formal Data Structure of Molenaar can serve as an meta­
language for description of geographical information as a whole, 
including topological, spatial and non-spatial aspects and inde­
pendent of used data model. The inherent connection of FDS 
with object oriented model makes it suitable to standardize the 
process for GIS design and realisation. To do this, the FDS must 
be refined and made more understanable. 

In this context the following sections will deal with FDS, object 
oriented model and the connection between them. 

2. Characterizing Formal Data Structure 

After Molenaar difference must be made between data and in­
formation in a GIS. Geographical data is defined in a GIS which 
is implemented in a computer. But geographical information is 
resulted from the thinking process of human. We capture geo­
graphical data from the reality to a computer by tranforming the 
geographical information or we get geographical information 
from a computer by tranforming the geographical data. The in­
teractions between computer and human are 'semantic transfor­
mations'. In a wide sense the process such as get a display file 
from a database is also a semantic transformation. 

We are used to think of geographical objects its data form is 
called 'terrain features' (point, line and area features). Every 
feature is associated with a 'feature identifier' (Fig. I). Every 
identified feature can be described by a geometic and a thema­
tic aspect. 

FigJ FDS for Single Valued Polygon Map (Molenaar 1989) 



Till now two thinking processes can be applied to. The first is 
classification of features to feature class: 'point feature class', 
'line feature class' and 'area feature class'. The second is gene­
ralisation of some properties from all features of one class to the 
feature class itself: since every point feature possesses a pair of 
coordinates, the point feature class possesses the description with 
a pair of coordinates. A further generalisation can be carried out 
if a super class - 'class of terrain feature classes' - is created: 
since every feature possesses a geometric and a thematic des­
cription, the 'class of terrain feature classes' possesses the pro­
perty being descripted by geometry and thematics. 

A class corresponds to an entitiy in the database theory, so that 
entity-relations may be well defined between classes. However, 
as will be shown in later, entity-relationships give only data 
oriented models that is only one aspect of FDS. 

The classes of point, line and area features construct the contact 
level of GIS to human without specifying the way to describing 
the positions, shapes and topology that are located at a more pri­
mitive level. 

In this primitive level a class composed of nodes and a class com­
posed of arcs are defined. They construct the complete geome­
tric network with a planar topological structure: non arc has a 
crossing point with another arc without creating an node; non 
node overlaps an arc without spliting it; and non node overlaps 
another node. 

Every node possesses a pair of coordinates. Ervery arc (an edge 
or a non-enclosed curve) is associated with a shape description 
(may contain more coordinate pairs). Between the two classes 
entity-relationships must also be pre-defined: every arc begins 
with a node and ends upon an other node. Between the feature 
and the primitive level some constant entity-relationships must 
also be pe-defined: Every point feature is associated with a node; 
Every line feature is associated with one or more arcs and inte­
rior nodes; Every area feature is associated with more arcs. 

As consequency all inter-relationships between terrain features 
are not defined as entity-relations upon the feature classes. They 
are expressed indirectly by the entity-relations between terrain 
feature classes and geometric primitives; and entity-relations 
within primitives themselves. For user only terrain features are 
accessable. Every thing which occurs at the geometric and topo­
logical level is organized automatically by the system. 

It should be noted that nodes and arcs as primitives are not ac­
cessable to user for topological consistancy. Manipulations 
~creation, up.dating and deletion) can only performed for satify­
mg the requrrements generated from the manipulations on the 
feature level. Explicit functions are only defined on the feature 
level. 

For example a spatial query to test if two line features have a 
crossi~g point ~nitia~ize~ the process to access all arcs by tracing 
the enttty-relatiOnship (lme_feature_to_arc) and to find out if the 
related arcs have a common node. 

More interests should be spend to the opposite side of cassifica­
tion and generalisation, that is the inheritance of 'properties' 
from super class to classes and from class to features. Not only 
the 'attribute properties' like the 'description by geometry and 
then:at~cs' are ~nheritable. More important are 'functional pro­
pertIes that WIll be dealt with in the next sections. 

152 

3. Characterizing Object Oriented Model 

In the sense of object oriented design and programming (Kim, 
1990) every object can be understood as an encapsulaed unit 
composed of a set of data and a set of functions to operate on the 
data. Data set (attributes) gives the state of, and function set 
(methods) the behavior of the object. 

The behavior of an object is involved via message passing to it. 
A message is always composed of three parts: the identifier for 
obtaining the object to which the message is to be sent; the se­
lector for specifying the state or behavior of the object; and the 
optional arguments that can be evaluated by the object (they may 
be attributes, objects or messages). For passing message to an 
object message interface must be defined for it. There is no way 
to access an object execpt through the public interface specified 
for it. 

By grouping objects sharing the same set of attributes and 
methods into a class -it is a new object- the common attributes 
and methods can be factored out from individual objects into the 
class (classification). Every object which belongs to a class is 
an instance which inherits all the attrubutes and methods of the 
class and may have additioal attributes and methods. 

Classes as objects can themselves be grouped into a superclass 
(generalization). Similiarly all attibutes and methods defined for 
a superclass are inherited into all its subclasses. 

A class may have any number of subclasses. However, a con­
straint can be made for an object oriented system that a class 
may belong to only one superclass. In this case a class inherits 
attributes and methods from only one superclass; this is called 
single inheritance. Without the constraint a class can inherit at­
tributes and methods from more than one superclass; this is 
~alle~ multiple inheritance. In a system which supports single 
mhentance, all classes form a hiearchy. 

Object oriented model includes the core properties of many well­
used models such as entitiy-relationship model and semantic 
data model. The class concept captures the (instance-of) rela­
tionship between an object and the class to which it belongs; the 
concept of a subclass specifying its superclass captures the ge­
?eralization (is~a) relationship; and the composition of an object 
m terms of attnbutes capture the aggregation relationship. 

An significant point of object oriented model is the way dealing 
with the attributes and their domains. The domain of an attribu­
~e is a cla~s to which the values of the attribute belong (e.g., 
mteger, strmg etc). This means that every integer or string value 
is an object or instance. The class of integers and the class of 
strings are only two primitive classes. The domain of an attri­
bute can also be any non-primitive class composed of objects 
other than alphanumerics. Sometimes a constraint is made that 
the domain of an attribute should only be a class hierachically 
rooted at a user-specified class to avoid the nested structures. 

Obviously the relationship between an object from one class and 
the objects from the classes as domains of attributes of the first 
o?ject gives a class hierarchy, which is called class-composition 
hIerarchy and has nothing to do with inheritance of attributes and 
methods. The class-composition hierachy corresponds to the ag­
gregation relationship and can be well-used for (e.g.) inter-rela­
tionships between the geometric primitives. 



A futher important property of object oriented system refers the 
extensibility: an existing system can be extended without intro­
ducing changes to it. The behavior of an object may be extended 
by simply including additional methods. Besides this pre­
defined attributes and methods of an object may also be re-uesd 
and inherited into a new specilized object. 

4. Implementating Formal Data Structure with Object 
Oriented Model 

The analogy of classes in object oriented model and in FDS is 
quite evident. Point features from the point class, line features 
from the line class and area features from the area class corre­
spond to objects or instances. Based on the Fig.l three levels 
may be dealt with as follows: 

At central level (in the sense of user) terrain features are refered, 
thus the feature level. Thematic description starts from the 
feature level upwards and in association with calssifications, 
whereas geometric description (including shap and planar topo­
logy) starts from the feature level downwards. 

It should be noted that Fig. 1 does not contain classes for com­
posite features. A composite feature has attributes that are them­
selve feature identifiers from other classes. 

An example of composite feature is given as follows. Defining 
class house which is composed of some area features, the class 
meadow which is composed of some other area features, and the 
class footpath composed of some line features. Then the class 
garden - its every feature with attributes refering an area feature 
from the class house, an area feature from the class meadow and 
a line feature from the class footpath - is a class composed of 
composite features. In this case, house feature, meadow feature 
and footpath feature are parts of garden feature (aggregation). 

Composite features and its classes are important for describing 
geographical information. They are not considered in the basic 
figure of FDS explicitly because they vary from one application 
to another. Based on the extensibility of object oriented model 
insertion of new classes to an existing class hierachy or network 
does not effect changes of the exsiting system and thus may be 
carried out in an any time later. 

Special emphasis will be made for the geometric description of 
terrain features. As shown in Fig. I links are drawn between node 
and point feature, between arc and area or line featurre. 

The relationship between point and node class is actually a bila­
teral class-composition hierachy: every point feature possesses 
an attribut its value reprensents an identifier to a node from the 
node class, and vice vesa. Note that a node can but not necessa­
ryly possess the meaningful attribut value as identifier to a point 
feature. 

Coordinates are objects of class composed of pairs of real 
numbers. The relationship between node and coordinate pair 
leads to another class-composition hierachy, not necessaryly bi­
lateral. 

But more important are here functions or methods associated 
with objects and classes: by defining the point feature class, 
functions may be defined simultaneously that must be carried 
out in association with messages passing to, for example in the 
process of creation, updating and deleting of a point feature. 

153 

For example, two functions: 

Fp I=(send a message to node class for starting the function Fn, 
the message contains the identifier and the coordinate pair of new 
created point feature); 

Fp2=(write the value of the passed identifier to the attribute of 
actual point feature for refering a node object) 

are associated with point feature class. Another function: 

Fn=(find the existing node or create a new node with the given 
coordinate pair passed by and send a message to the point feature 
with passed identifier and start the function Fp2, the message 
contain the found or new created node identifier) 

is associated with the node class. 

The creation function of a new point feature associated with the 
point feature class starts the function Fp I immediately after a 
new point feature is created. By tracing the way of message 
passing the new point feature get the reference to its node. 

The relationship between area feature and arc is also a class-com­
position hierachy and bilateral aggregations: every area feature 
has a set of attributes their values refer arc objects from arc class 
for representing the contours of an area. Conversely every arc 
has two attributes their values refer two areas features (left and 
right area) from area class. Methods associated with area feature 
may be more complicated. Because a series of geometric-topo­
logical conditions must be satisfied for arcs such that they con­
struct a area feature. It is not possible to specify them without 
more detailed specifications. 

Other relationships between the feature level and the geometric 
level can be refined at the same way which will be not treated 
here in more detaiL 

The consistency of planar topological structure within geome­
tric data and hence correct inter-relationships between the terrain 
features can only be guaranted if manipulations of geometric-to­
pological level are involved by messages exchanged between 
feature level and primitive level. Of course powerful functions 
for handling geometric data and topology are required. 

5. Concluding Remarks 

Conclusively said FDS can serve as object oriented data model 
of geographical information in a meta-level, which integrates 
spatial (geometric) data with its planar toplogical structure, non­
spatial data and inter-relationships between the spatial and non­
spatial data in a whole system. 

To implement a new-generation GIS with object oriented model 
FDS can be well-used but it must be refined in two aspects: on 
the one side, a more detailed meta-structure is required for defi­
ning thematic, geometric and topological data that will be eva­
luated by applications (state model); and on the other side, the 
behaviors of object features and classes (functions or methods) 
must be specified for implementation (behavior model). 

Besides this, object oriented programming languages such as 
C++, Object LISP etc play an important role because they 



support the implementation of object oriented model in an effi­
cient way and can establish standard methods for GIS software 
engineering. 

References: 

Boudriault, G., 1987. Topology in the TIGER File. Auto Carto 
8 Proceedings, pp.258-263. 

Kim, W., 1990. Introduction to Object-Oriented Databases. The 
MIT Press Cambridge, Massachusetts. 

Molenaar, M., 1989. Single Valued Vector Maps - A Concept in 
Geographic Information Systems. Geo-Informations-System, 
Vo1.2, No.1, pp.18-26. 

Adress of Authors: 

Dr. H. YanglDr. W. Reinhardt 
Siemens Nixdorf Informationssystem AG 
Fachzentrum Geo-Informationssystem 
Otto-Hahn-Ring 6 
D-8000 Miinchen 83 

154 


	S42BW-110041306410

