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ABSTRACT: 
In th.is paper, we d~scribe a method for the computation of the optical flow in a sequence of images 
acq~Ired by a. mo~mg camera. The method is guided by the simultaneous satisfaction of two op­
posIte constramts mtroduced by the regularization process used to remove the underdetermination 
related to the aperture phenomenon. Two cooperative Kalman filters are used which allow us to 
compute the motion information present in the images. Such a method is particularly well suited 
to deal with outdoor scenes and some real experiments are presented which highlight its validity. 
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1 Introduction 

In the context of a rapidly growing demand for a computer 
based interpretation of images, motion analysis plays a ma­
jor role. Image motion is mainly used: 

1. as a meaningful information on objects motion in the 
context of scene behavioral analysis [4J; 

2. as a model of the space-time redundancy in an image 
sequence, in the context of coding for image transmis­
sion [3J. 

Motion analysis is commonly based on a pixel per pixel 
estimation of the instantaneous displacement of the under­
lying physical points. The resulting dense field, estimated 
from each pair of consecutive images in a sequence of images 
acquired through a single CCD camera, is commonly named 
the optical flow. 

1.1 Explicit motion information 

The optical flow estimation relies on the local information 
which is intrinsically part of the image. In the following, we 
will refer to it as the explicit motion information. 

The explicit motion information has a local nature. The 
extraction process, at a given pixel, of a motion information 
is conditioned by the existence of a non zero spatial gradient. 
Therefore, the explicit information is available only inside a 
non homogeneous area of an image. 

Moreover, explicit information, when it does exist, is in­
complete. It only provides a partial view of the underlying 
motion, depending on the spatial gradient orientation at the 
considered pixel. Most of the time, it amounts to the projec­
tion of the searched displacement along the local spatial gra­
dient of the intensity. This projection is commonly known 
as the orthogonal displacement. The underdetermination 
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which comes from the lack of a second projection illustrates 
a physical phenomenon known as the aperture phenomenon 
[5J. The ensued ambiguity summarizes the difficulties which 
are faced when estimating the motion in image sequences. 

1.2 The regularization operation 

Due to the incomplete nature of the explicit motion infor­
mation, the optical flow estimation implies a spatial integra­
tion of the local information, in order to remove, when this 
is possible, the underdetermination related to the aperture 
phenomenon. This operation, usually named regularization, 
requires an accurate determination of the spatial scope of 
integration. Intuitively, this integration must respect the 
boundaries between two homogeneously moving image ar­
eas. Therefore, every qualitative change in the displacement 
vector field must be effectively detected. 

The quality of a regularization operator will be judged 
on both its integration capability and its ability to detect a 
qualitative change of the estimated vector field. The antag­
onistic nature of these two constraints plays a major role in 
the choice of a regularization method. 

We propose an estimation of the optical flow to be used 
for the analysis of moving scenes. Our approach is guided by 
the simultaneous satisfaction of the opposed constraints put 
by the regularization. It is based on the use of a parametric 
estimator built on a Kalman filtering process which is similar 
to the one proposed by Stuller and Krishnamurthy [1 J. 

2 A parametric Kalman model for 
the motion estimation 

The parametric Kalman model which has been introduced 
in [1 J generates a parameterized family of optical flow esti­
mators. The motion is estimated using a line-based scanning 



of the image. The spatial integration of explicit information 
is due to the process memory which is derived from the 
model state equation. The main interest of this approach 
comes from its ability to remove the underdetermination 
bound to motion estimation. 

In order to use this model, three main hypotheses must 
be satisfied: 

1. the illumination is supposed to be constant between 
two consecutive images of the sequence; 

2. the displacement between two consecutive images can 
be locally assimilated to a translation; 

3. the image noise is supposed to be white and of known 
vanance. 

2.1 Model description 

The model equation of the filter provides the relation be­
tween the displacement vectors associated to two consecu­
tive pixels. It can be expressed as a function of a transition 
matrix <I? and of a white noise (Wi): 

D(i) = <I?D(i - 1) + Wi-l 

The model makes the assumption of a parametric tran­
sition matrix whose type is: 

with 0 ::S A ::S 1 and Id being the identity matrix. The 
choice of A determines the estimator's memory, therefore 
it strongly influences the trade-off between the integration 
capability and the adaptability when being faced to a sudden 
change in the estimated process. 

In the following, E).. will denote the estimator parame­
terized by A. 

In every pixel, the measure is equal to the component of 
the searched displacement along the spatial intensity gradi­
ent. The fact that this component is the only information to 
be intrinsically available provides an intuitive justification. 

2.2 Estimator running 

Between two consecutive pixels, the estimation is updated 
both in the direction of the spatial intensity gradient and 
in the directly orthogonal direction, under the premise that 
there exists a significant variation of the gradient along the 
current image line. When the preceding condition is satis­
fied, and according to the operator memory, the estimation 
process progressively removes the underdetermination due 
to the aperture phenomenon. The estimation error remains 
minimum along the spatial intensity gradient direction and 
is maximum along the orthogonal direction. Associated to 
each pixel, the value of this second component of the error 
is a measure of the residual underdetermination. 

The parametric Kalman model represents a continuum 
between two extreme estimators (resp. A = 0 and A = 1) 
(refer to figure 1). These two extreme estimators are radi­
cally opposed from the regularization point of view. Finally, 
each instance of the model is a trade-off between a good inte­
gration capability and a good adaptability to the underlying 
estimation process. 
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3 U sing two cooperating Kalman 
filters 

3.1 Extreme models 

Closely looking at the two extreme cases generated by the 
extrema of A in the [0, 1] range is extremely valuable. The 
Eo and El estimators are well suited to the motion estima­
tion of a rigid object (El) and to the motion estimation of 
a totally random motion (white motion process) (Eo). 

Eo estimator: As the process memory is non-existent, 
no spatial integration is performed. In this case, it is easily 
shown that the gain vector is oriented in the direction of the 
intensity spatial gradient The model converges toward the 
estimate of the local orthogonal displacement vector field. 

El estimator: As the process memory is total the spatial 
integration is maximum. A significant change in the gra­
dient direction between two consecutive pixels leads to an 
optimal update of the gain, in the direction perpendicular to 
the gradient one. In this case the model converges towards 
the estimate of the true displacement vector field. 

From the above, one may infer that: 

• The El estimator allows an optimal removal of the un­
derdetermination bound to motion estimation. But, as 
a consequence, the estimator's memory is detrimental 
to its adaptability. 

• The Eo estimator does not allow any underdetermi­
nation removal at all. But its adaptability, that is its 
ability to quickly adapt itself to a sudden change of 
the estimated signal is excellent. 

The principle of our method is based on a cooperative 
usage of the El and Eo models to provide an accurate motion 
estimation. It is justified by the simultaneous exploitation 
of the good integration characteristics of El and of the good 
adaptability of Eo. 

3.2 Cooperation principle 

We have highlighted the El estimator capability to, accord­
ing to the parametric family, optimally remove the under­
determination bound to the motion estimation. The major 
problem related to the usage of El is its lack of ability to 
adapt itself to a qualitative change in the estimated system. 

The basic principle of the cooperation relies on the par­
allel activation of the El and Eo estimators in order to use 
the adaptability of the second to the benefit of the first. 

The useful information of Eo resides in the innovation 
term. In this specific case, the innovation - the difference 
between a measure and the predicted value of this measure­
is easily expressed as a function of the spatial gradient G( i), 
the searched displacement D( i) and a white noise Vi accord­
ing to the equation: 

Zi = G(ifD(i) + Vi 

As a consequence, every qualitative modification in the 
"intensity spatial gradient" vector field Gi, as well as in the 
"true displacement" vector field D( i) induces a change of 
the Eo estimator innovation. 
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Figure 1: The parametric Kalman model, as a continuum 
between two extreme estimators. Three motion estimators, 
respectively E>.=O.l, E>.=O.8 and E>.=1.o, are applied to the 
case of an horizontally moving synthetic 2D gaussian form, 
with a displacement of one pixel per frame. (a) Exact or­
thogonal motion field. (b) Result of an E>.=O.l estimation. 
The model converges toward the estimate of the orthogonal 

The idea is to test, while estimating, if there is a change 
in the innovation output of the Eo estimator. A PAGE­
HINKLEY cumulated sum test is used for the detection of 
abrupt changes [2]. When a change is detected, the El 

model is re-initialized. This is to insure the non integra­
tion of information which is related to two different homo­
geneously moving areas of the image. 

4 Experimental results 

This section describes the results obtained when applying 
the ideas described in this paper to a sequence of real In­
fra Red images. Such images have been acquired using the 
thermic camera "ATHOS" of the SAT company. A pair of 
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motion field. (c) Result of an E>.=O.8 estimation. The es­
timation of the exact motion field (horizontal motion field) 
begins to appear. In this case however) one may notice that 
the right boundary tends to vanish. (d) Result of an E>.=1.o 

estimation. The exact motion field is estimated, but the 
right boundary of the form is now completely lost. 

two consecutive images of the sequence is shown on figure 2. 
The images show a traffic road of Paris and were taken with 
a camera mounted on a moving vehicle. The size of the raw 
images is 256 x 512 pixels. 

The two cooperative Kalman filters have been applied 
to this pair of images. In order to better show the found 
changes of the motion field, we give the detection result only 
in a small window corresponding to the left car of the raw 
images (refer to Figure 2). The orthogonal motion field re­
lated to this car is estimated using the E>.=o estimator (refer 
to Figure 3). The innovation of the Kalman filter, associated 
to the dotted line of Figure 3, is represented in Figure 4. 
A detection of abrupt changes in the innovation signal is 
done, using a PAGE-HINKLEY cumulated sum test. Four 
changes are found, directly associated to the limits of the 



Figure 2: A pair of IR raw images. 

Figure 3: Detection of changes m the orthogonal motion 

field. 

Figure 4: The innovation signal of the Kalman filter cor­
responding to the dotted line shown in the previous figure. 
One may notice that the four detected changes correspond 
to the fronteers of the car wheels. 

car wheels. 

5 Conclusion 

In the introduction we have shown that the explicit infor­
mation is characterized by its local and incomplete nature. 
The proposed regularization method allows one to complete 
the explicit information where it is available. 

In the case of images of outdoor scenes, which are often 
well textured, the explicit motion information is available 
everywhere in the images. A problem arises when process­
ing images of indoor scenes which are very structured and 
where texture is very often not available. Let us consider, 
for example, the case of an' object moving over an homoge-
neous background. The motion is only effectively perceived 
on the object boundaries. The information provided by the 
boundaries must be propagated inside the object. There­
fore, it is no more an information processing issue - as the 
regularization is - but a topological identification problem 
aiming at the determination of structural areas in the image. 

The next step of our study will put the emphasis on how 
to take into account the structural content of an image in 
the context of motion estimation. 
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