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ABSTRACT 

The direct linear transform is a popular alternative to 
the Bundle adjustment method as it does not require 
calibrated cameras and the transform parameters can 
be computed directly from a linear function. However, 
the method has some drawbacks in precision and 
reliability compared to Bundle adjustment. 

This paper reports a comparative evaluation of the 
two methods. The methods are evaluated using a 
theoretical test where control points, check points and 
control points have been simulated. Precision of the 
two methods have been calculated using data from 
control point calculations. Internal reliability have 
been estimated using data from the calculation of 
parameters. 

DLT has been evaluated using both an iterative and a 
linear approach of the parameter calculations. Bundle 
adjustment has been evaluated in two ways: internal 
and external orientation parameters as unknowns, 
and only external orientation parameters as unknown. 

The evaluation shows that Bundle adjustment gives a 
better precision and internal reliability compared to 
DL T when 6 control points are used. When the 
number of control points is increased, the difference 
decreases in both precision and internal reliability. 
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1. J NTRODUCTION 

Bundle adjustment and the Direct Linear Transform 
(DLT) are the most commonly used methods when 
calculating point coordinates from image data. This 
paper reports a theoretical study of the two methods 
focused on precision and estimation of internal relia­
bility. 

Bundle adjustment is based on the collinearity equa­
tions, where the physical reality is modelled in a 
straightforward way. The collinearity equations form a 
perspective transform which mathematically describes 
that the object point, the perspective centre of the 
camera and the measured image point ideally lie on a 
straight line. The transform includes parameters for 
interior and exterior orientation. Exterior orientation 
parameters determine the position of the camera in 
terms of position coordinates and rotation of the 
image relative to an object space coordinate system. 
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DLT is a projective transform, where the transform 
parameters are not directly interpretable in terms of 
interior or exterior orientation. One of the advantages 
of DLT is that the parameters can be calculated without 
any initial approximations. This has made the method 
popular to use in cases where only non-metric came­
ras are available, i.e. cameras without calibration or 
without fiducial marks. 

1.1 Bundle adjustment 

The collinearity equations are defined by: 

Tx 
x = xp - cN 

!r y = yp - cN 

and 

Tx = rn(X-Xc) + r21(Y-Yc) + r31(Z-Zc) 

Ty = r12(X-Xc) + r22(Y-Yc) + r32(Z-Zc) 

(1) 

(2) 

(3) 

(4) 

where x and yare the measured image coordinates in 
the comparator coordinate system and X, Y, Z are the 
object coordinates in an object space coordinate system. 
The collinearity equation contains in total nine un­
known parameters where: Xc, Yc, and Zc are the coor­
dinates of the perspective centre in the object space 
coordinate system; xp and yp are the coordinates of the 
principal point in the image system; c is the principal 
distance of the camera; rll, ... ,r33 are elements of the 
rotation matrix describing the rotation of the film 
plane into the object space. The nine rotation matrix 
elements are functions of three independent angles 0, 
<P and K, which describe the rotations around the X, Y, 
and Z axes. 

The collinearity equations are non-linear and must be 
linearized. Initial approximations are needed for both 
the resection problem, i.e. estimation of inner and 
outer orientation elements, and the intersection pro­
blem, i. e. calculation of object coordinates of new 
points. 

1.2 DLT 

In DLT, comparator coordinates are expressed in terms 
of object coordinates and eleven transform para­
meters. 



DLT is defined by [McGlone at aI1989]: 

LsX + L6Y + L7Z + Ls 
Y = yX + LlOY + LllZ + 1 

where Ll , ... ,Lll are the transform parameters. 

(6) 

(7) 

The DLT transform is non-linear but by making the 
assumption that corrections to the observed image 
points are small and negligible, a linear equation 
system results. This linear equation system is used to 
determine the unknown parameters. A more 
rigourous method is to treat the equations as non­
linear and compute the parameters iteratively. Point 
coordinates in object space are calculated by treating 
the equations as non-linear. 

2. METHOD 

The basic idea is to simulate an ideal test where con­
trol points, check points and cameras are simulated, 
and to use a unit camera, i. e a camera with a unit 

principle distance c and a unit reference variance cr~. 

Control points have been defined in two different con­
figurations with 6 and 13 points. Check points are 
defined in an 11 by 11 by 11 grid. The coordinates of 
both the control and check points are defined to be 
without any error. Cameras have been defined in two 
configurations with two and four cameras, see table 1. 
Comparator readings of the image points have been 
simulated using the collinearity equation without any 
distortion component. 

test number of control 
cameras points 

2 6 

2 4 6 

3 2 13 
4 4 13 

Table 1: The two methods have been compared using four different 
tests with two or four cameras and 6 or 13 control points 

The comparison of DL T and Bundle adjustment has 
been done using linear and iterative solutions of DL T­
parameters. The collinearity equations have been used 
in two ways: interior and exterior orientation para­
meters unknown, and interior orientation parameters 
known and exterior orientation parameters unknown. 
In total, four cases have been tested and compared, see 
table 2. 
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case method solution of parameters and number of 
parameters parameters 

A DLT linear L1,,,·,L11 (11) 

B DLT iterative LV···,L11 (11) 

C Bundle iterative XO, YO, ZO, n, <P, K, 

xP'YP,c (9) 

D Bundle iterative XO, YO, ZO, n, <P, K (6) 

Table 2: The four tested methods and their parameters. 

2.1 Control points, check points and cameras 

The control point grids have been configured accor­
ding to figure 1. 

x a) b) 

Fig 1 Control points used for the calculation of parameters. 
Configuration a) has 6 points and b) has 13 points. 

The checkpoints have been arranged into an equal 
spaced grid of size 11 by 11 by 11, see figure 2. Side 
length of the control point grids and the check point 
grid have been selected to one. 

Fig 2 Check points arranged in an 11 by 11 by 11 grid. 

The simulated cameras have been set to a height one 
unit above the control or check point grids, pointing to 
the centre of the grids, see figure 3. 

l.0 

1.0 

x 1IIIIIIII liP I 
1.0 

Fig 3 Configuration of the simulated cameras. Test 1 and 3 uses 
cameras a and b while test 2 and 4 uses all four cameras. The came­
ras are pointing to the middle of each grid configuration. 



2.2 Solution of DLT parameters 

As mentioned earlier, the DLT parameters can be 
calculated either in a direct way where the corrections 
to the observations are assumed to be small and can be 
ignored or by an iterative non-linear solution. The 
first type with a direct solution will be called linear 
DLT and the second type will be called iterative DLT. 

Direct solution: The equations for the direct solu­
tion can be written as: 

Fl = L1X + L2 Y + L3 Z + L4 -

LgxX - LlOxY - L11xZ - (x - vx) = 0 (8) 

F2 = LsX + L6 Y + L7Z + Ls -

LgyX - LlOyY - LnYZ - (y - vy ) = 0 (9) 

where vx, Vy are residuals of the measured image 
points. 

Iterative solution In the iterative solution, all 
observations have corrections except the control 
points, whichJ.re assumed to be without error. The 
equations for the iterative solution of the parameters 
can be written as: 

F3 = L1X + L2Y + L3 Z + L4 - Lg (x-vx)X-

LlO (x - vx) Y - L11 (x - vx) Z - (x - vx) = 0 (10) 

F 4 = LsX + L6 Y + L7 Z + Ls - Lg (y - vy ) X -

LlO (y - v y) Y - Lll (y - v y) Z - (y - v y) = 0 (11) 

Since equations (10) and (11) are non-linear they must 
be linearized before they can be used in a least squares 
solution. 

2.3 Solution of parameters in the collinearity 
equations 

As in the case with the iterative DLT, all observations 
have corrections. The collinearity equations for the 
iterative solution can be written as: 

Fs = cTx - Nxp + N(x-vJ = 0 

F6 = c Ty - N yp + N (y - v y) = 0 

(12) 

(13) 

In case D, see table 2, equation (12) and (13) are lineari­
zed with respect to the unknown parameters Xo, Yo, Zo, 

n, <1>, K. For case C they are also linearized with respect 
to parameters xp, yp' and c. 

2.4 Solution of object coordinates 

Both the DLT and the collinearity equations are treated 
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as non-linear. Both the comparator readings and the 
calculated parameters are treated as observations. 

2.5 Evaluation 

The methods have been evaluated with respect to pre­
cision and internal reliability. Precision refers to the 
statistical variability of the result and the internal reli­
ability indicates to what extent gross errors in an 
observation can be detected. 

Precision values have been calculated for all control 
points in the 11 by 11 by 11 grid. An average value is 
calculated for the X, Y and Z component of the check 
point coordinates. 

Internal reliability is evaluated by using the cofactor 

matrix Q~v and the correlation matrix of the residuals 

resulting from the parameter calculations. An average 
of the off-diagonal elements in the correlation matrix 
has been calculated to get a value for comparison of 
how correlated the parameters are in the four cases. 

Each diagonal element of the covariance matrix Q~ 

gives an indication of to what extent a gross error in 
the observations can be detected into a specific obser­
vation. A value of above 0.5 has been selected to indi­
cate that an error can be detected in that position with 
a high degree of confidence. 

3. ADJUSTMENT PROCESS 

In a first step, the transform parameters for each of the 
four cases A, B, C, and D in table 2, are calculated using 
a least square adjustment method. In the same step, 

cofactor matrix Q~v and the corresponding correlation 

matrix of the measurement residuals are computed. In 
a second step the calculated parameters and their cal-

culated cofactor matrix Q~x is used to calculate the 

standard deviation (j of the check points in order to 
estimate the precision of the coordinates of each point. 

For all test set-ups the adjustment is overdetermined, 
i.e. the number of observations exceeds the number of 
parameters carried in the adjustment process, see 
table 3. 

case test parameters observations redundancy 
(u) (n) (r) 

A 1,2 11 12 1 
B 1,2 11 12 1 
B 1,2 9 12 3 

C 1,2 6 12 6 

A 3,4 11 26 15 
B 3,4 11 26 15 
C 3,4 9 26 17 
D 3,4 6 26 20 

Table 3: The four tested methods A, B, C, and D and redundancy in 
the adjustment process. See table 1 and 2 for cases and tests. 



The simulated cameras are defined to be independent 
of each other, i.e. the parameters for each camera can 
be calculated independently. 

3.1 Adjustment of the parameters 

DL T Parameters: Parameters of the linear DLT, case 
A equation (8) and (9), are calculated using adjustment 
of indirect observations of the form [Mikhail 1976]: 

v+B~ =f (14) 

where v is the vector of residuals of the measure­
ments, B is the matrix of parameter coefficients, ~ is 
the vector of parameter estimates, and f is the vector of 
observations. 

In order to calculate the parameters of the iterative 
DLT, case B, equations (10) and (11) are linearised by a 
Taylor series using only the first order terms. The 
linearized DLT equations look like: 

o oF3 oF3 
F3 + ;-dL1 + -dL2 + ... 

uL1 oL2 

oF3 8F3 oF3 + -dLll + -dx + -dy = 0 (15) 
oLll Ox oy 

The parameters are calculated using general least squ­
are adjustment. Expressing the coefficients of the 
measured image points by matrix A, and the para-
meter corrections by vector ~ results in: 

Av+B~ =f (17) 

Matrix A and B are based on equations (15) and (16). A 
have the structure: 

(18) 

where sub-matrix J Ai is the jacobian for image 

measurement of control point i: 

(19) 
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The number of control points is k. Matrix B have the 

structure: 

B (20) 

where the sub-matrix lBi is the jacobian of parameters 

for control point i: 

(21) 

Collinearity equation parameters: The unknown 
parameters are calculated by linearization of equations 
(12) and (13) in the same way as for the DLT equations. 
Case C uses nine and case D six unknown parameters, 
see table 2. The resulting equations for nine para­
meters looks: 

o oFs oFs oFs 
Fs + -dn + -d<l> + -dK + 

on oct> oK 
OFs 

+-dY 
oYe e 

oFs 
+-dc 

oc 

8F6 
+-dY 

oY
e 

e 

oF6 +-dc 
oc 

OFs 
+-dZ 

oZe e 

8Fs 
+ -dx 

ox 

OFs 
+-dx + 

8x P 
P 

oFs 
+ 0; dy = 0 

8F6 
+ --dx + 

Ox P 
P 

oF6 + -dy = 0 
oy 

(22) 

(23) 

The system of equations is solved using the general 
case least square in equation (17) where A is identical 
to the jacobian in equation (18) and (19) and B is 

identical to equation (20) but lBi is substituted by: 

(24) 



Solution of parameters: The parameters for each 
camera are calculated separately for each of the four 
cases A, B, C, and D. The parameters in the linear DLT 
equation are calculated by [Mikhail 1976]: 

where 

N = BtWB 

t = BtWf 

W = Q-1 = I 

(25) 

(26) 

(27) 

(28) 

The image measurements are defined to be indepen­
dent and with unit weight, thus Q = I in equation (28). 

The cofactor matrix of the residuals used in the esti­
mation of internal reliability is : 

(29) 

The non-linear DLT parameters and the Bundle 
adjustment parameters are calculated by: 

t 
t = JB We f 

We = (JA QtAr1 = (JAtAr
l 

The cofactor matrix of the residuals Q~v is: 

(30) 

(31) 

(32) 

(33) 

The cofactor matrix of the computed parameters for 
both the direct and the iterative methods is: 

(34) 

The cofactor matrix Q~x is important as it is used in the 

following step of check point calculation together with 
the calculated parameters. 

3.2 Adjustment of object point coordinates 

Object points from the DLT: Object coordinates are 
calculated for case A and B in table 2 by using non­
linear functions similar to equations (10) and (11), in 
the following denoted F' 3 and F' 4' The equation is dif­
ferent in that all eleven parameters are treated as 
observations together with the comparator readings, 
i. e. L1, ... ,Lll have residuals added to them in the same 
way as the comparator readings x and y. The linearized 
DLT equation is the same as in equations (15) and (16), 
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with partial derivatives for the object coordinates X, Y, 
and Z added. The unknown object coordinates are 
calculated using the general least square adjustment in 
equation (17). The check points are calculated separa­
tely but with data from all cameras. The A and B 
matrix has the same structure as in equation (18) and 

(20) but the jacobian J Ai for camera i is: 

(35) 

and the jacobian Jm for camera i is: 

(36) 

Object points from the collinearity equation: 
Analogous to DLT, equations (12) and (13) are used 
with the modifications that all parameters calculated 
in the previous step have residuals added to them in 
the same way as the measured image points. The 
modified functions are denoted F' 5 and F' 6' Also the 
linearization is analogue, i.e. partial derivatives for 
the object coordinates X, Y, and Z are added to equa­
tions (22) and (23). The unknown object coordinates 
are calculated in the same way as with DLT but the 

jacobian of the observation coefficients J Ai is: 

The jacobian Jm is the same as in equation (36) except 

that functions F' 5 and F' 6 are used instead of F' 3 and 
F'4' 

Solution of cofactor matrix: The basis for estima-
c 

tion of precision is the cofactor matrix Q xx of the com-

puted check points. In case A, B, C, and D the cofactor 
matrix is given by: 

Qc _ N-1 _ (Jt W J )-1 
xx - - B e B (38) 

(39) 

Matrix Qll is the a priori cofactor matrix of the observa­
tions, Le. the calculated parameters from the first step 
and the measured image coordinates of the check 



points. For each camera used in the calculation of 
object points, a sub-matrix Qi is defined as: 

[~i 0 n Q = 0 1 (40) 

0 0 

where Q~x,i is the cofactor matrix from equation (34) of 

the computed parameters for camera with index i. The 
ones in the diagonal is due to the fact that the mea­
sured image coordinates of the used check point have 
unit weight. The resulting Qll matrix for k cameras is: 

(41) 

4. RESULTS 

In order to estimate precision, the standard deviation 
0' is calculated for each of the coordinate components 
of the check points. The diagonal elements qii of the 

cofactor matrix Q~x in equation (38) have been used to 

calculate 0': 

(42) 

where 0'0 is set to 1. 

The standard deviation have been calculated for each 
check point in the grid of figure 2. In order to get a 
value for comparison of case A, B, C and D in table 2, 
the mean deviation has been computed for each of the 
coordinate components, i.e. ax, O'y' O'z see table 4 and 5. 

test component A B C D 

1 O'x 3.50 2.47 1.83 1.30 

O'y 3.78 2.66 1.88 1.30 
O'z 9.74 7.27 5.29 3.70 

2 O'x 2.32 1.70 1.40 1.01 

O'y 2.47 1.77 1.48 1.01 

O'z 6.49 5.08 4.38 3.07 

Table 4: Mean deviation 0' of the coordinate components X, Y and Z 

using 6 control points. Test 1 uses two cameras and test 2 uses four 
cameras. See table 2 for case A, B, C, and D. 

Figure 4 Shows the mean deviation in the X-compo­
nent, ax, for case A, B, C, and D. The mean deviations 
of the Y-component gives the same relative difference 
for case A, B, C, and D. 
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test component A B C D 

3 O'x 1.57 1.12 1.39 1.01 
O'y 1.66 1.13 1.47 1.01 
O'z 4.84 3.41 4.35 3.05 

4 O'x 1.46 1.05 1.37 0.98 
O'y 1.53 1.05 1.43 0.98 
O'z 4.51 3.16 4.25 2.98 

Table 5: Mean deviation 0' of the coordinate components X, Y and Z 
using 13 control points. Test 3 uses two cameras and test 4 uses four 
cameras. 

0' 4,0~------------------------------------~ 

3,0 

2,0 

1,0 

0,0 
2 3 

case 

• A 

II B 

~ C 
l2I D 

4 
Fig 4 Mean deviation in the X-component, O'x, from the check 

point calculation in test 1, 2, 3, and 4, see table 1. 

Figure 5 shows the Z-component of the same check 
point grid as in figure 4. 

0' 10,0 
case 

8,0 • A 

iii B 

JZI C 

6,0 rJ 

4,0 

2,0 

0,0 
2 3 4 

Fig 5 Mean deviation in the Z component, 0' Z' from the check 

point calculation in test I, 2, 3, and 4. 

To get an idea of the internal reliability the correlation 
of the residuals resulting from the calculation of trans­
form parameters can be studied. Figure 6 shows an 
average of the correlation values of the residuals for 
the four cases A, B, C, and D. Correlation is calculated 

from Q~ in equation (29) and (33) by: 

~. 

P - ~ 
ij - ~iqjj (43) 

Another way of getting an idea of the internal reliabi-



lity is to see how many of the observations have an 

diagonal element value above 0.5 in Q~v as shown i 

figure 7. 

p 1,0 

0,8 

0,6 

0,4 

0,2 

0,0 

case 
____ ~. A 

II B 
rz1 C 

~---~rJD 

6 13 

Fig 6 Average values of the residual correlations Pij from the 

parameter calculation using 6 or 13 control points. 

100,0% ,------------------. 
case 

80,0% • A 
II B 
fZ:I C 

60,0% IZJ D 

40,0% 

20,0% 

0,0% 
6 13 

Fig 7 Estimation of internal reliability. The staples indicates 
the percent of parameters in case A, B, C, and 0 with a value above 

0.5 in the diagonal of Q~v using 6 or 13 control points. The values for 

case A and Busing 6 control points are zero. 

5. DISCUSSION 

The evaluation is intended to give an estimate of the 
precision and an idea of the internal reliability, using 
different number of control points and cameras. The 
evaluation is theoretical in that it is based on an ideal 
simulated camera and comparator measurements. The 
distance between camera and control! check points 
have been short. 

The test results of precision is shown in tables 4, 5 and 
figures 5, 6. The values of mean deviation in table 4, 5 
does not give anything on the distribution of precision 
in the check point grid. However, the values are 
intended for a comparison of case A, B, C and D as 
shown in figure 4 and 5. 

Figure 4 and 5 confirms the intuitive idea that itera­
tive DLT should give a better precision compared to 
linear DLT and that bundle adjustment should give a 
better precision with 6 compared to 9 unknown 
parameters. It is also shown that the difference in 
precision decreases between DLT and bundle 
adjustment when the number of control points is 
increased. An interesting result is that the difference 
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between DLT, case A and B, and Bundle adjustment 
with 9 unknown parameters, case C, is rather small 
when 13 control points are used. The iterative DLT in 
case B is even better than Bundle adjustment in case C. 

In general, the mean deviation in the Z-component is 
about 2.5 to 3 times higher compared with the X and Y 
component. The relative difference of the Z­
component between case A, B, C and D is 
approximately the same as for the X and Y compo­
nents. 

Correlation of the comparator measurement residuals 
resulting from the calculation of transform parameters 
are shown as average values in figure 6. It indicates 
that DLT needs many control points to have an accep­
table internal reliability. In case A and B, with only 6 
control points, the residuals are fully correlated, i. e. 
the residuals of the comparator measurements are 
dependent on each other. A gross errors in one of the 
comparator measurements is not possible to locate 
when DLT is used. Bundle adjustment has lower cor­
relation compared to DLT when 6 control points are 
used. When 13 control points are used the difference 
between DL T and Bundle adjustment becomes small, 
but still Bundle adjustment is better. 

Figure 7 gives an idea of in how many of the compara­
tor measurements a gross error can be detected. Using 
DLT and 6 control points, i. e. case A and B, a gross 
error can not be detected in any of the comparator 
measurements. For Bundle adjustment the situation 
is better. With 13 control points the difference between 
DLT and Bundle adjustment becomes smaller. A gross 
error can be detected in 70 - 85% of the measurements 
in case A, B, C, and D. 

An indication of future work in evaluating the 
methods is to make a more extensive study of internal 
and also external reliability which are important 
aspects of the methods. 

6. CONCLUSIONS 

Bundle adjustment gives a better precision and inter­
nal reliability compared to DLT when the control 
points are few. When more control points are used the 
difference decreases in both precision and internal 
reliability. 

In a case where a non-metric camera is used, i. e. the 
internal orientation of the camera is unknown, and 
many control points are available and well distributed 
in object space, the iterative DL T is preferable when 
precision is important. The linear DLT gives almost 
the same precision as Bundle adjustment but may also 
be preferable because no estimates of the parameters 
are needed. 



The results from the estimates of the internal relia­
bility indicates that Bundle adjustment in general has 
a better internal reliability than DL T but the difference 
decreases with the number of control points. 
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