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ABSTRACT 

A common problem in computer vision, digital photogrammetry and cartography is to find the best match between a given 
line and a set of candidate lines, based on characteristics of shape. Fourier descriptors have been used successfully to match 
lines. In this paper we show how the best geometric fit of two matched lines is determined. The translation, scaling and 
rotation parameters are found by matching the Fourier descriptors with a least- squares adjustment. A mean-square error can 
be calculated after matching. This offers the advantage of a quantitative measure of goodness of fit. Experimental results 
using synthetic data demonstrate the feasibility of the proposed algorithm. 
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1. INTRODUCTION 

To classify a set of patterns or to match two sets of 
features are common problems in computer vision, digital 
photogrammetry and cartography. These tasks are broadly 
known as pattern recognition. The fundamental approach 
to these problems is to find the best match in shape be
tween a given feature and a set of candidate features. Each 
candidate feature should be fitted against the given feature 
one by one, based on their characteristics of shape. This 
matching process is often conducted to come out with some 
quantities of intrinsic measure for checking the degree of 
similarity. The best match is then determined according to 
the intrinsic measure. 

An ambiguity may emerge on the determination of 
the best match, if there are more than one candidate fea
tures having a similar shape to that of the given feature. 
Because features may be distorted in practice, it is not sur
prising that the best match in shape is not guaranteed to 
be a correct match. Under the circumstance, additional in
formation is needed to make a better decision. An extrinsic 
measure, such as a measure of the relative location, orienta
tion and dilation between features, is considered to be key 
information to resolve this ambiguity. We therefore suggest 
that a matching process should generate both of intrinsic 
and extrinsic measures. 

Geometric information of features is often described 
by lines of the vector form. Image features, such as object 
boundaries, skeletons, edges or textures can be represented 
by lines. Although other geometric information such as 
area, perimeter, number of holes and moments is believed 
to be useful, the information content of lines is thought 
to be the most compact, accurate and useful. This paper, 
therefore, focuses on the matching of lines. 

In the last two decades, many techniques, such as 
polygonal approximation [Pavlidis and Ali, 1975; Green
feld and Schenk, 1989], 'IjJ - s curves [Ballard and Brown, 
1982; Schenk, Li and Toth, 1991], and invariants of Fourier 
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descriptors [Granlund, 1972; Lin and Hwang, 1987], have 
been proposed to tackle the problem of matching linear 
features. These techniques emphasize the use of shape in
variants, a kind of intrinsic measure, to discriminate linear 
features. Although these techniques were reported efficient 
in some cases, two disadvantages were recognized. First, 
measuring similarity by comparing the shape invariants be
tween features does not provide a clear statistical sense. 
Second, they cannot provide any extrinsic measure. 

In this paper, a new matching process is proposed. It 
is designed to generate both of intrinsic and extrinsic mea
sures. Our strategy is to transform each candidate line to 
be optimally matched, in the condition of the least-squares 
fit, with the given line. The transformation parameters are 
solved by means of least-squares adjustment. A statistical 
quantity, the mean-square error, can be calculated after the 
adjustment. This quantity presents an ideal intrinsic mea
sure. And the estimated transformation parameters offer 
an extrinsic measure. 

A conventional transformation is usually performed 
about the origin of the coordinate system. The spatial rela
tionships between the original and the transformed features 
cannot be explicitly described by using the parameters of 
a conventional transformation. We, therefore, developed 
a centroid-based transformation which transforms a feature 
about its centroid - the mean position. 

The quantities of intrinsic and extrinsic measures are 
needed to be referred to a spatial coordinate system. It 
seems necessary to perform the matching process in the 
spatial domain. However, it is required to pre-define corre
sponding points between the lines. Difficulties in finding the 
corresponding points are expected because of the differences 
of sampling density, scale and starting point. In order to 
remedy this problem, an algorithm to perform the match
ing process in the frequency domain is developed, where 
the Fourier descriptors of lines are matched. The results of 
matching in the frequency domain are also interpreted with 
respect to the quantities desired in the spatial domain. 



This paper is composed of 6 sections including intro
duction and conclusion. Section 2 outlines the Fourier de
scriptors of closed and open lines. Section 3 describes the 
centroid-based transformation in the spatial and frequency 
domains. An algorithm of least-squares matching in fre
quency domain and interpretation of the results from the 
matching algorithm are illustrated in section 4. Section 5 
presents some experimental results using synthetic data. 

2. FOURlER DESCRIPTORS 

2.1 Closed lines 

A two-dimensional closed line can be described by two 
periodic functions x(t) and y(t) (Fig. 1). The parameter t is 
defined as 27rlj L, where L is the perimeter of the closed line 
and 1 denotes the arc length along the line from the starting 
point s to p. According to the theory of elliptic Fourier de
scriptors (Kuhl and Giardian, 1982; Lin and Hwang, 1987], 
these two periodic functions can be expressed by Fourier 
expansions in matrix form as 

[ x(t) 1 = [ ao 1 + t [ale ble 1 [ cos kt 1 (1) 
y(t) Co 1e=1 Cle die sin kt ' 

where 

ao = f; J;1I' x(t) dt; Co = f; J;1I' y(t) dt; 
ale = :; J;1I' x(t) cos kt dt; ble = :; J;1I' x(t) sin kt dtj 
Cle = :; J;1I' y(t) cos kt dtj die = :; J;1I' y(t) sin kt dt. 

In Eq.(1), ao and Co are the mean values of x(t) and 
y(t) respectively, which indicate the geometric center ofthe 
closed line, or so called the centroid. 

~------------------------_x 
y(t} 

o 27T 27T 

Fig. 1. A 2-D closed line and its periodic functions. 

2.2 Open lines 

An open line is traced once and then retraced back
ward so that a closed boundary is obtained (Fig. 2). The 
Fourier descriptors can then be applied. Let L denote the 
arc length of an open line and the parameter t is defined 
as 7rl/ L. The functions of x(t) and y(t) can be expressed 
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as periodic functions. A close examination of the peri
odic functions (Fig. 2) yields two important characteristics. 
First, they are even functions because x( -t) = x(t) and 
y( -t) = y(t). This implies that the coefficients of ble and 
die are all zeros. Second, the integration Jtt: x(t) cos kt dt is 
equal to that of J;:~t~l x( t) cos kt dt, and it is appropriate 
to y( t) also. Therefore, an open line can be described with 
the Fourier expansions as 

[ x(t) 1 = [ ao 1 + f [ ale cos kt 1 ' 
y(t) Co 1e=1 Cle cos kt 

(2) 

where 

ao = 1 .lo x(t) dt; Co = 1 J: y(t) dtj 
ale = ! J: x(t) cos kt dtj Cle = ! J: y(t) cos kt dt. 

~------------------------.,X 

Fig. 2. A 2-D open line and periodic function of x(t). 

3. CENTROID-BASED TRANSFORMATION 
AND PHASE SHIFT 

3.1 Transformation in Spatial Domain 

If a linear feature consists of a list of (x, y) coordinate 
pairs of nodes, a transformation in spatial domain is im
plemented by transforming all coordinate pairs in the list. 
Conventionally, such transformation is operated about the 
origin of the coordinate system. For instance, let the list 
of (x', y') be the coordinate pairs after transformation. A 
similarity transformation about the origin is expressed as 

where 

S 
B 
~x,!J..y 

sin B 1 [ x 1 [~x 1 cosB y + ~y , 

Scale factor; 
Rotation angle; 
Translation. 

(3) 

With this transformation, one can easily discover that 
the positional change of the transformed feature does not 
correspond with the translation parameters ~x and ~y, be
cause the centroid of the feature is changed by scaling and 



rotation. It is, therefore, appreciated that the parameters 
of this transformation do not explicitly represent the geo
metric relationships between the original and transformed 
features. In order to obtain an explicit form of transfor
mation parameters, the change of the centroid should be 
isolated from scaling and rotation. This can be accom
plished by means of transforming a feature about the cen
troid, which is called centroid-based transformation. For 
example, a centroid-based similarity transformation is ex
pressed as 

[ Zy; 1 = s [ C?s f} - sin f} 1 [ Z = Zc 1 + [ Zc 1 + [ .6.z 1 ' 
sm f} cos (J y Yc Yc .6.y 

(4) 
where 

Zc and Yc are the coordinates of the centroid. 

3.2 Transformation in Frequency Domain 

In frequency domain, instead of transforming coor
dinate pairs, a transformation can directly operate on the 
Fourier coefficients. This can be seen mathematically, if the 
coordinate pairs (z,y) and (z',y') in Eq. (4) are substituted 
by Eq. (1). A notable fact is that it is natural to perform 
a centroid-based transformation in frequency domain, be
cause coordinates of the centroid are represented by the 
coefficients of zero harmonic, ao and Co, and the other coef
ficients of higher harmonics are independent of the centroid 
translation. Therefore, a centroid-based transformation in 
frequency domain can be divided into two parts. The first 
part is a translation involving just ao and co. The second 
part which deals with a transformation that does not affect 
the position of the centroid, such as scaling, rotation and 
shearing, involves the other coefficients. These two parts 
can be done separately. 

For the first part and given that the coefficients ao 
and Co are coordinates of the centroid, a translation can 
be directly added to the coefficients of the zero harmonic. 
Let a~ and c~ represent the transformed coefficients, then a 
translation in frequency domain will be 

(5) 

For the second part, the Fourier coefficients of non
zero harmonics are pre-multiplied by a transformation ma
trix, which can be a matrix of similarity or affine transfor
mation. The coefficients of each harmonic can be operated 
separately, because they are orthogonal. For a similarity 
transformation, the transformation matrix will be a combi
nation of scale factor and rotation matrices. Let the coef
ficients with a prime be the transformed coefficients, then 
the transformation in frequency domain is expressed as 

[ 
a~ b~ 1 [ cos f) - sin f} 1 [ale ble 1 ' c~ d~ = S sin f} cos (J Cle die (6) 

where 
k = 1 ,...., 00. 

3.3 Phase Shift 

If a linear feature is recorded by using a sequential list 
of (z, y) coordinate pairs along the feature, the first point 

471 

to be recorded is defined as the starting point. A change of 
the starting point does not alter the geometric property of 
the feature. However, it does change the Fourier descriptors 
except for the coefficients of the zero harmonic. For a closed 
line, the starting point can be anywhere along the curve. If 
a change of the starting point is interpreted as a change of 
the phase t and denoted as a phase shift .6.t, then .6.t can 
be an arbitrary value between 0 and 211". For an open line, 
the starting point is either one of the two end points. Its 
phase shift is therefore 0 or 11". 

According to the theory of Fourier series, a phase shift 
is accomplished by post-multiplying the coefficients of each 
harmonic by a phase shifting matrix, which is similar to a 
rotation matrix. Mathematically) it can be expressed as 

sin k.6.t 1 
cos k.6.t . (7) 

3.4 Combined Effect of Transformation and Phase 
Shift 

The effects of a transformation and a phase shift can 
be combined in frequency domain. From Eqs. (6) and (7), a 
combined effect of a similarity transformation and a phase 
shift will be 

[ 
a~ b~ 1 
c~ d~ 

S [ C?s f} 
smB 

[

COS k.6.t 
sin k.6.t 

- sinf} 1 [ ale 
cosf} Cle 

- sin k.6.t 1 
cos k.6.t . (8) 

Other transformations can be derived in the same 
fashion as the similarity transformation. Eq. (5) can be 
used for all kinds of transformation. All what needs to be 
changed for another type of transformation is the transfor
mation matrix in Eq. (8). For example, an affine trans
formation in frequency domain with a phase shift can be 
formulated as 

where 

is an affine transformation matrix. 

4. LEAST-SQUARES MATCHING 

4.1 Matching in the Spatial Domain 

The matching process for two given lines has been 
defined in the first section. Let a list of (z, y) coordinate 
pairs represent a candidate line, which is to be transformed 
in order to match a given line pattern composed of a list of 
(z', y') coordinates. In the spatial domain, if corresponding 
points between the two lines can be defined, each pair of 
corresponding points can form two observation equations, 
which can be derived from Eq. (4) as 



wnere 
v",, and vy' are residuals. 

Having the observation equations, a least-squares adjust
ment can be conducted to solve the unknowns of S, 8, .6.z 
and .6.y, by minimizing the summation of v!, and v~" 

In practice, however, corresponding points between 
two lines are difficult to define, due to the differences of 
sampling density, scale and starting point. A possible so
lution is to model the lines with some mathematical func
tions and resample the lines at equally spaced points. For 
instance, one could take the Fourier descriptors to model 
each line and resample the lines at every 27r / n interval, 
in which n is the number of points to be resampled for 
each line. Total number of 2n observation equations can 
be formed accordingly. Although this method is feasible, 
it seems not rigorous and efficient. First, the resampling 
space is difficult to determine. A complicated line requires 
a small sampling space, but a smaller sampling space in
creases computation time. Second, the computation is not 
straightforward. The lines are transformed into the fre
quency domain when modeling, and are transformed back 
to the spatial domain when resampling. Therefore, an idea 
of matching lines in frequency domain, matching Fourier 
descriptors, emerges to remedy these problems [Zhan and 
Roskies, 1972]. 

4.2 Matching in the Frequency Domain 

Instead of matching spatial coordinates, Fourier de
scriptors of each harmonic are matched in the frequency 
domain. The problem of finding corresponding points no 
longer exists. The transformation parameters can be di
rectly solved in the frequency domain and they naturally 
correspond to the idea of the centroid-based transforma
tion, so that the computation becomes efficient and useful. 

Since the Fourier descriptors of a closed line and an 
open line have different properties, the algorithms of closed
line matching and open-line matching are different. In gen
eral, open-line matching is a simplified case of the closed
line matching. Because a phase shift does not change the 
centroid, the translation parameters can be directly cal
culated for the both cases by using the following formula 
derived from Eq. (5): 

(11) 

For the case of matching closed lines, each harmonic 
(except the zero one) has 4 coefficients, so that 4 observation 
equations can be constructed for each harmonic. Let ak, bk , 

Ck and dk be the Fourier coefficients of a candidate line, and 
the coefficients with a prime represent the given line. If a 
similarity transformation is applied, then the observation 
equations can be derived from Eq. (9) as follows: 
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[ a~] [ v.~ I [ a, 
bk -Ck 

-d, ] 
bk Vb' S bk -ak -dk Ck , + A: 

dk bk Ck vc~ Ck ak 

d~ Vd~ dk -Ck bk -ak 

[ cos 0 cos kLlt ] 
cos 8 sin k.6.t 

(12) sin 8 cos k.6.t . 
sin 8 sin k.6.t 

In Eq. (12), the parameters, S, 8 and .6.t, are un
knowns, and the equations are nonlinear. Combining the 
equations of all the harmonics from 1 to a maximum har
monic m, we obtain an redundant system of nonlinear equa
tions. Least-squares adjustment can be used to solve the 
unknowns by minimizing the summation of squared residu
als. An iterative approach of least-squares adjustment can 
be applied to solve such nonlinear equations with the given 
approximations of the unknowns. 

For open-line matching, Eq. (12) can be simplified as 

In order to linearize the equations, we let e = S cos 8 and 
f = S sin 8. In addition, the starting point is assumed to be 
at either end of the open line, so that .6.t = ° or 11". When 
.6.t = 0, the observation equations will be 

When .6.t = 7r, they become 

The observation equations become linear in this case, 
so that unknowns can be solved without iteration. However, 
in order to know whether Eqs. (14) or (15) should be used, 
the parameter .6.t should be determined in advance. The 
method to approach this will be described in section 4.4. 
The parameters Sand 8 can be derived from the solution 
of e and f by using 

S 
(} 

Je2 + f2, 
arctan(f / e) . 

4.3 Weight Matrix and Mean-Square Error 

(16) 

Using least-squares adjustment, the mean value ofthe 
coordinate differences between two matched lines should be 
0, and a mean square error can be calculated from the differ
ences. If we treat the coordinates Zl and y' as observations 
with a variance u 2 , the mean-square error of the match is 
the best estimate of u 2

• It is obvious that those properties 
of least-squares adjustment are defined in the spatial do
main. Because the matching is performed in the frequency 
domain, two questions arise. First, what should the weight 
matrix for the observations a~, b~, c~ and d~ be? Second, 



how is the mean square error from the residuals va~, Vb~, ve~ 
and Vd~ calculated? 

In order to answer the first question, variances and 
covariances between the Fourier coefficients should be ana
lyzed. Let the covariance matrix of the III and y coordinates 
be an identity matrix multiplied by a unit weight variance 
O'~. From Eq. (1) we have the relationship between the 
coordinates and the coefficients as follows: 

(17) 

One notable fact is that the off diagonal terms of the 
covariance matrix of the Fourier coefficients should all be 
zeros, because the functions used to calculate the coeffi
cients are orthogonal. Also according to the error propaga
tion law and Eq. (17), the diagonal terms (variances of the 
coefficients) can be calculated as follows 

~ fg7l" cos2 kt dt 

~ fg7l" sin2 kt dt 
O'~, 
O'~. 

(18) 

It can, therefore, be concluded that the weight matrix 
is an identity matrix multiplied by O'~. This conclusion is 
also appropriate to the case of open-line matching. 

The answer to the second question is that the mean
square error (MSE) is equal to the summation of the 
squared residuals in the frequency domain divided by 2. 
If the maximum harmonic is m, it can be expressed as 

Proof. The mean-square error is defined in the spatial do
main as 

1 (r7l" f271") 
MSE = 27r Jo v!(t)dt + Jo v!(t)dt . 

By substituting Eq. (1) into above equation, the MSE can 
be expressed in the frequency domain as 

MSE 

f271" m 1 
Jo L (vq cos kt + Vdlc sin kt)2 dt . 
o k=l 

Because of the orthogonal property, the formula becomes 

MSE 1 m (1271" 1271" -2 L v! cos2 ktdt + v~ sin2 ktdt+ 
7r k=l 0" 0 Ir. 

1k 1k ) v~ cos2 ktdt + v~ sin2 ktdt . 
o Ir. 0" 

Because 

f271" f271" 
J
o 

cos2 ktdt = J
o 

sin2 ktdt = 7r , 

we obtain 
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MSE - 1 Lm 
( 2 2 2 2 ) - -2 Va' + Vb' + v e' + vd' . 

Ir. Ir. " " k=l 

The theory and proof are also appropriate to the case of 
open-line matching, except there are no Vb~ and Vd~ terms. 

4.4 First Approximations 

The first approximations may be crucial for solving 
a set of nonlinear equations. With poor approximations, 
the computation may converge to a wrong solution or even 
be divergent. It is, therefore, important to provide good 
approximations for the adjustment computations. 

In Eq. (12), let k = 1, then it seems possible to solve 
the approximations, So, ()o and ilto, from the four equa
tions. Unfortunately, the parameters () and ilt are depen
dent in each harmonic, so that ()o and ilto solved from the 
first harmonic may be correct or incorrect with a difference 
of 7r. In order to assure the approximations are correct, the 
equations of the first two harmonics should be used. 

We firstly linearize Eq. (12) by letting 

cel = S cos () cos iltj cc2 = S cos () cos 2iltj 
cs1 = S cos () sin iltj cs2 = S cos () sin 2iltj 
sel == S sin () cos ilt; sc2 = S sin () cos 2iltj 
ss 1 = S sin () sin iltj ss2 = S sin () sin 2ilt. 

(20) 

Then they can be solved by using the following formulas: 

[ cel 1 [ a, bl -Cl 

-~ r [ai 1 cd bi -al -dl Cl bl . 

sel Cl d1 at bi c~' 
ssl d1 -Cl bi -al d~ 

[ cc2 1 [ a, b2 -C2 -~ r [a: 1 cs2 b2 -a2 -d2 C2 b2 
sc2 C2 d2 a2 b2 c~' 

ss2 d2 -C2 b2 -a2 d~ 

According to Eq. (21), we define 

C1 
Sl 
C2 
S2 

cel - ssl 
cs1 + sel 
cc2 - ss2 
cs2 + sc2 

So cos( ()o + ilto)j 
So sin( ()o + ilto) j 
So cos( ()o + 2ilto) j 
So sin( ()o + 2ilto). 

Then the approximations can be calculated as 

v'CP + SP, 
2 arctan(Sl/C1) - arctan(S2/C2), 
arctan(S2/C2) - arctan(Sl/C1). 

(21) 

(22) 

(23) 

In fact, there are other combinations of Eq. (20) to solve the 
approximations. However, in practice, it is not necessary to 
elaborate the computation of the approximations. 

For open-line matching, although the system is lin
ear, the parameter ilt should be determined in advance. 
The observation equations of the first two harmonics are 
also required to solve the problem. According to Eq. (14), 
there are 2 unknowns and 2 equations, so that one can solve 



2 approximate rotation angles from the equations of each 
harmonic. Let 81 and 82 denote the rotation angles solved 
when k = 1 and k = 2 respectively, then flt can be deter
mined by using the following algorithm: 

if 181 - 82 1 close to 0, 
if 181 - 821 close to 11', 

flt 0; 
flt = 11'. 

5. EXPERIMENTS 

5.1 Matching Closed Lines 

Fig. 3 shows a digitized, closed line (A). The line 
B is a candidate, to match line A. The starting points are 
indicated by solid circles. In order to check the computed 
transformation parameters we copied line A to line B by 
the following transformation: 

translation flz = 150 
fly = 100 

scale S = 0.6 
rotation 8 = 45° 

After the transformation, we shifted the starting point to 
the 10th node and added Gaussian noise (p = 0, U = 3). 

B 

A 

Fig. 3. Example of matching closed lines. 

According to the matching process described in sec
tion 4, line B is transformed to fit line A. Through the 
matching process, the mean-square error (intrinsic mea
sure) as well as the transformation parameters and phase 
shift (extrinsic measure) are calculated. The mean-square 
error is expected to be about 3, and the calculated trans
formation parameters should be the inverse-transformation 
parameters used to copy line B. 

The following results are obtained: 

Intrinsic measure -mean-square error = 3.44 
Extrinsic measure-translation flx = -149.3 

scale 
rotation 
phase shift 

fly = -99.9 
S = 1.65 
8 = -44.9° 
flt 
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The intrinsic measure is close to the number we expected. 
Line B' in Fig. 3 is the transformed line B using the esti
mated transformation parameters. Note that the area be
tween line A and B' is minimized by the proposed matching 
process. 

5.2 Matching Open Lines 

Here, we repeat the procedure for open lines. Line D 
in Fig. 4 is a copy of line 0, obtained with the following 
transformation: 

translation flz = -150 
fly = -100 

scale S = 0.5 
rotation 8 = 180° 

Before the transformation we added Gaussian noise (p 
0,0' = 3) to O. 

Fig. 4. Example of matching open lines. 

We performed two experiments. First, the starting 
points of line 0 and D are at the same end. Second, we 
changed the starting point of line D to the other end. In 
both cases we obtained the same results. Line D' shown in 
Fig. 4 is the transformed version of line D. The matching 
results are listed as follows 

Intrinsic measure - mean-square error = 2.6 
Extrinsic measure- translation flz· = 150.5 

fly = 99.8 
scale S = 1.976 
rotation 8 =-179.4° 

They correspondent with the transformation applied to gen
erate line D. 

CONCLUSION 

The mean-square error obtained in our matching ap
proach is an ideal intrinsic measure to the goodness of 
the match. This quantity is obviously more transparent 
than the use of a table of deviation on shape invariants 
[Granlund,1972; Lin and Hwang, 1989]. 



The quantities of extrinsic measure may be useful in 
some aspects. For example, in the case of recognizing hand
writing of digital numbers, the digits of "2" and "5" as 
well as "6" and "9" are similar in shape but different in 
orientation. With intrinsic measure alone, they can hardly 
be distinguished [Pavlidis, 1980]. Checking the rotation 
parameter of the extrinsic measure will be helpful in this 
case. Matching edges of a pair of stereo images [Schenk, Li 
and Toth, 1991], is another example. One of the edges in 
the left image may be similar in shape to more than one 
edge in the right image. In this case, the extrinsic measure 
provides a global criterion. 

In this study we match lines globally, that is, as whole 
entities. Consequently, lines which only match in parts can
not be dealt with. Since in many applications lines only 
match in parts, we are presently extending our approach to 
cope with this situation. 
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