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Commission III: Mathematical Analysis of Data 

Classification of remotely sensed data with artificial neural networks is called neuro-classification. Artificial neural networks 
have shown great potential in classification of remotely sensed data. The amount of data used for training a neural network 
affects accuracy and efficiency of the neural network classifier. A neural network was trained separately with 5%, 10%, 15%, 
and 20% image data from a LANDSAT Thematic Mapper scene, which was acquired 29 July 1987. At a risk level of 5%, the 
results showed that (a) classifiers NN-5% (neuro-classification with 5% of the image data used for training), NN-lO%, and 
NN-15% did not differ from one another, (b) classifiers NN-15% and NN-20% did not differ from each other, but (c) 
classifiers NN-5% and NN-lO% differed from classifier NN-20%. The training rates were reduced by more than 10 
seconds/cycle as we increased the percentage of the image data for training a neural network. Ten percent image data are 
needed to adequately train a neural network classifier, the classifier provides satisfactory performance. 
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1. INTRODUCTION 

Artificial neural networks have been used for image pro­
cessing and have shown great potential in classification 
of remotely sensed data. However, the amount of data 
necessary for training a neural network has not been 
addressed. Benediktsson et al. (1990) classified an 
image (135 x 131 pixels) using a neural network with 
the back-propagation learning algorithm. They trained 
with approximately seven percent of the image data and 
obtained a training accuracy of 93%. Hepner et al. 
(1990) performed a neuro-classification of a four-band 
(bands 1, 2, 3 and 4) LANDSAT Thematic Mapper 
(1M) image (459 x 368 pixels ) with four land-cover 
categories (water, urban, forest and grass). They used 
100 (10 x 10) pixels per category for training the neural 
network classifier. Two LANDSAT TM images were 
enhanced with a digital land-ownership data and then 
classified for crop residues (Zhuang et al., 1991; 
Zhuang, 1990). The neural network classifiers were 
trained with approximately ten percent of the 1M data, 
and an overall accuracy of more than 90% was obtained 
for each classification. From these neuro-classifications, 
one to ten percent of image data were used for the train­
ing of the neural networks. Therefore, the amount of 
data used for the training needs to be investigated. 

The objective of this study was to investigate the 
amount of image data necessary for training a neural 
network classifier. A LANDSAT TM image was 
classified with the classifier, and 5%, 10%, 15%, and 
20% of the TM data were used for the training. 

2. MATERIALS AND METHODS 

2.1 LANDSAT TM Data 

The LANDSAT TM scene used in this project was 
acquired 29 July 1987. The scene covered an approxi­
mately 10.36 km2 area (107 x 107 pixels), including 
sections 3, 4, 9, and 10 located in T28N, R5E of Rich­
land township, Miami County, Indiana, U.S.A. Seven 
categories of land cover for these sections included 
corn, soybeans,forest, pasture, bare soil, and river. The 
ground observation data were provided for section 9. 
Aerial photographs from 1987 were available for this 
study area. The U.S. Geological Survey 1:24,000 topo­
graphic map of the Roann, Indiana Quadrangle was also 
used as a reference. 

2.2 Neural Network 

The neural network used in this study was configured as 
a three-layer back-propagation network, including input, 
hidden and output layers. Adjacent layers were fully 
interconnected. The input layer was composed of an 
Nx8 array of binary-coded units, corresponding to N 
bands (N == 7 in this study) of the 8-bit LANDSAT TM 
data. Twenty units were assigned to the hidden layer, 
and six thermometer-coded units in the output layer 
referred to the six categories of land cover. With ther­
mometer coding, for example, category 4 of the six 
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categories would be represented as 1 in four most­
significant bits and 0 in the remaining two bits (4 = 1 1 1 
100). 

For the training of a neural network, the TM data were 
fed to the input layer and propagated through the hidden 
layer to the output layer, and then the differences 
between the computed outputs and the desired outputs 
were calculated and fed backward to adjust the network 
connections (weights). This process continued until the 
maximum of the differences was less than or equal to 
the desired error. Additional details of the network are 
given in Zhuang (1990). 

The neural networks simulator was NASA NETS 
(Baffes, 1989), which runs on a variety of machines 
including workstations and PCs. The simulator provides 
a flexible system for manipulating a variety of 
configurations of neural networks and uses the learning 
algorithm of the generalized delta back-propagation. 
The NETS software was run on SUN SPARe worksta­
tions for image classification. Interface routines were 
developed to make NETS suitable for image 
classification (Zhuang, 1990). 

2.3 Neuro-Classifications 

The neural network classified an unknown pixel based 
on the knowledge learned from a training data set. We 
trained a neural network separately with 5%, 10%, 15%, 
and 20% TM data. Therefore, four neural networks with 
the same configuration were separately trained 
corresponding to the various percentages of training 
data. These four neural network classifiers were named 
NN-5%, NN-IO%, NN-15%, and NN-20%. For the study 
area, training samples were selected for six land-cover 
categories based on the corresponding reference infor­
mation, including the ground observation data, the aerial 
photographs, and spectral features from individual 
categories. The training data for category river were 
obtained by an unsupervised classification (clustering) 
of the portion of the image containing the river. 

2.4 Normalization of Classification Results 

With the iterative proportional fitting procedure, a con­
tingency table can be standardized to have uniform mar­
gins for both rows and columns in order to examine the 
association or interaction of the table (Fienberg, 1971). 
The classification results were summarized as a confu­
sion matrix for each classifier. Individual entries of the 
confusion matrix were divided by the table total, and the 
result produced a contingency table. The contingency 
table was normalized with the iterative proportional 
fitting procedure. The procedure made the row and 
column margins consecutively equal one. A standard 
function from SAS software (SAS Institute, 1988a) was 
used to implement the procedure on contingency tables. 
Before implementing the iterative proportional fitting 
procedure, we eliminated zero counts in a contingency 
table using the method of smoothing with pseudo-counts 
(Fienberg and Holland, 1970). 



2.5 Evaluation of Classifications 

Multiple comparisons were made to evaluate the four 
classifiers, including NN-5%, NN-1O%, NN-15%, and 
NN-20%. By extracting the correct percentages of each 
classification category from Tables 1 through 4, we pro­
duced a performance summary table of classifiers (Table 
5). The Tukey multiple comparison method was used 
for the evaluation of these four classifiers. Any two 
population means of classifiers will be judged to be dif­
ferent from each other if the difference of the 
corresponding sample means is greater than the Tukey 
distance (Mendenhall and Sincich, 1989). The Tukey 
multiple comparison method is supported by SAS 
software (SAS Institute, 1988b). 

3. RESULTS 

The results of the Tukey multiple comparisons (Table 6) 
provided the overall classification accuracies for the 
classifiers ofNN-5%, NN-1O%, NN-15%, and NN-20%. 
At a risk level of 5%, the results showed that (a) 
classifiers NN-5%, NN-1O%, and NN-15% did not differ 
from one another, (b) classifiers NN-15% and NN-20% 
did not differ from each other, but (c) classifiers NN-5% 
and NN -10% differed from classifier NN -20%. The 
training rates of the neural network classifiers are illus­
trated in Figure 1. 

4. DISCUSSION 

As shown in table 8, we could train the neural network 
with either 5%, 10%, or 15% TM data because the sta­
tistical evaluation showed no significant differences 
among the three corresponding classifiers at a 5% risk 
level. The evaluation was done based on individual 
category accuracies highlighted in Tables 1 through 4. 
However, interpretations of classified images (Figure 2) 
show that the two classification results of NN -10% and 
NN-15% were more uniform than the result of NN-5%. 
We could not interpret that the classification result of 
NN-20% differed from the results of NN-lO% and NN-
15%. 

As we increased the percentage of the TM data for train­
ing, the corresponding training rate also increased (Fig­
ure 1). When we increased 5% to 10% for training, the 
training rate was decreased by 2 seconds/cycle. When 
we increased 10% to 15% or 20%, the training rate was 
reduced by 11 or 16 seconds/cycle, respectively. In this 
project, the training periods ranged from 100 to 200 
cycles. 

CONCLUSIONS 

Considering the evaluation results and the training rates, 
we recommand using around 10% TM data to train a 
neural network, and the performance of a neural net­
work classifier is satisfactory for this level of training. 
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Table 1. Normalized results for the classification results 
obtained with the neural network algorithm 

for the classification using 5% of data for training. 

Reference categories 
Classification 

categories Com Soybeans Forest Pasture Bare Soil River 

Com 0.9465 0.0026 0.0317 0.0125 0.0011 0.0055 
Soybeans 0.0044 0.9275 0.0080 0.0454 0.0025 0.0123 
Forest 0.0065 0.0442 0.9389 0.0102 0.0001 0.0002 
Pasture 0.0012 0.0221 0.0006 0.8970 0.0789 0.0002 
Bare Soil 0.0297 0.0009 0.0010 0.0410 0.9271 0.0003 
River 0.0002 0.0001 0.0078 0.0001 0.0000 0.9918 

Table 2. Normalized results for the classification results 
obtained with the neural network algorithm 

for the classification using 10% of data for training. 

Reference categories 
Classification 

categories Com Soybeans Forest Pasture Bare Soil River 

Com 0.9528 0.0080 0.0122 0.0200 0.0006 0.0064 
Soybeans 0.0035 0.9121 0.0321 0.0412 0.0001 0.0111 
Forest 0.0185 0.0169 0.9408 0.0234 0.0001 0.0003 
Pasture 0.0007 0.0414 0.0029 0.9145 0.0404 0.0001 
Bare Soil 0.0019 0.0195 0.0005 0.0008 0.9770 0.0003 
River 0.0082 0.0001 0.0035 0.0001 0.0000 0.9880 

Table 3. Normalized results for the classification results 
obtained with the neural network algorithm 

for the classification using 15% of data for training. 

Reference categories 
Classification 

categories Com Soybeans Forest Pasture Bare Soil River 

Com 0.%07 0.0059 0.0072 0.0182 0.0012 0.0068 
Soybeans 0.0031 0.9619 0.0272 0.0075 0.0001 0.0002 
Forest 0.0146 0.0064 0.9561 0.0222 0.0003 0.0004 
Pasture 0.0005 0.0160 0.0010 0.9116 0.0586 0.0123 
Bare Soil 0.0009 0.0006 0.0052 0.0445 0.9486 0.0002 
River 0.0077 0.0001 0.0000 0.0001 0.0000 0.9920 

Table 4. Normalized results for the classification results 
obtained with the neural network algorithm 

for the classification using 20% of data for training. 

Reference categories 
Classification 

categories Com Soybeans Forest Pasture Bare Soil River 

Com 0.9692 0.0043 0.0108 0.0082 0.0002 0.0073 
Soybeans 0.0026 0.9570 0.0066 0.0212 0.0028 0.0098 
Forest 0.0087 0.0016 0.9875 0.0013 0.0005 0.0004 
Pasture 0.0004 0.0226 0.0009 0.9505 0.0255 0.0001 
Bare Soil 0.0067 0.0062 0.0001 0.0122 0.9748 0.0001 
River 0.0001 0.0001 0.0026 0.0001 0.0000 0.9970 
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Table 5. Performance summary of 
the neural network classifiers corresponding 

to the trainings with 5%, 10%, 15%, and 20% TM data. 

Classification Classifiers 
categories 

NN-5% NN-lO% NN-15% NN-20% 

Com 0.9465 0.9528 0.9607 0.9692 
Soybeans 0.9275 0.9121 0.9619 0.9570 
Forest 0.9389 0.9408 0.9561 0.9875 
Pasture 0.8970 0.9145 0.9116 0.9505 
Bare Soil 0.9271 0.9770 0.9486 0.9748 
River 0.9918 0.9880 0.9920 0.9970 

Table 6. SAS output from the multiple comparisons 
of the classifiers corresponding to the trainings 

with 5%, 10%, 15%, and 20% TM data. 

General Linear Models Procedure 
Tukey's Studentized Range (HSD) Test for variable: Y 

NOTE: This test controls the type I experimentwise error rate, 
but generally has a higher type Il error rate than REGWQ. 

Alpha= 0.05 df= 14 MSE= 0.00017 
Critical Value of Studentized Range= 4.111 
Minimum Significant Difference: 0.0219 

Means with the same letter are not significantly different. 

Tukey Grouping Mean N METHOD 

A 0.9727 6 NN-20% 
A 

B A 0.9552 6 NN-15% 
B 
B 0.9475 6 NN-lO% 
B 
B 0.9381 6 NN-5% 
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Figure 1. Training rates of 
the four neural network classifiers. 
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Figure 2. LANDSAT imagery and the classification results obtained with NN-5%, NN-lO%, NN-15%, and NN-20%. 
(Legends are associated with the classification results.) 


