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ABSTRACT 

Scale space techniques are widely used in digital photogrammetry. Typical implementations use the scale 
space as a discrete representation, thus inherently assuming that all features represented in images of similar 
resolutions belong to the same scale space level. However, this approach ignores differential scale variations that 
exist between conjugate features in multiple images, or even between different features in a single image. The 
subject of this paper is an investigation into theoretical and practical aspects associated with the use of scale 
space techniques in both the image and object space domains. The interrelationship between the scale space 
representations of these two domains and the effects of differential scale variations in digital photogrammetric 
operations, such as matching, object space reconstruction, and orthophoto production are also addressed. 

1. INTRODUCTION 

Physical phenomena in object space occur over a wide va­
riety of spatial extents. Macro-variations of a surface ex­
press its major trend, while micro-variations correspond to 
trends of smaller extent. The concept of macro- and micro­
variations is relative and depends on the specific applica­
tion. What is considered a macro-variation in one applica­
tion might very well be viewed as a micro-variation in an­
other. In digital images, changes in gray values correspond 
to object space phenomena, which can also be perceived 
within areas of different sizes, ranging from few pixels to 
large regions. However, even region-wise changes occur over 
an extensive array of region sizes, ranging from as little as 
a few pixels to as much as a large part of the image. The 
identification of these changes is essential in decoding the 
information which inherently exists in an image. 

The scale space representation of signals in general, or dig­
ital images in particular, is widely used to successfully pro­
duce several versions of the same image in which the infor­
mation content is changing in a systematic and, therefore, 
easy to exploit fashion [Lindeberg, 1990], [Yuille & Poggio, 
1983]. Physical phenomena of various extents can be easily 
identified through the behavior of their images in different 
levels of scale space [Lu & Jain, 1989], [Witkin, 1983]. 

In our paper, we present the basic axioms of scale space, 
and we analyze the corresponding mathematical aspects, 
together with the proper selection of scale-generating func­
tions. The effect of differential scale variations on pho­
togrammetric procedures is discussed, and we report how 
a continuous scale space can be used to bypass the short­
comings of this effect. Finally, the scale space representation 
of object space and its potential use in photogrammetry are 
explored. 
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2. SCALE SPACE 

The scale space representation of a signal f( x, y) is a set of 
signals {f:(:c, Yi n)}, representing the original one in various 
scale levels as function of a scale parameter n. The set 
of signals {f:( x, Yi n)} is called the scale space family of 
f(x,y). 

The objective of the scale space representation of any signal 
is to create a scale space family in a way that information 
conveyed by this signal will become more explicit. In order 
for this goal to be met, the generation of scale space family 
has to follow some basic guidelines [Lindeberg, 1990]: 

.. The scale space family has to be generated by the 
convolution of the original signal with a single scale­
generating function s( x, Yi n) 

r:(x,Yjn) = s(x,Yjn) * f(x,y) (1) 

.. The scale-generating function should be selected in a 
proper manner, such that larger values of n would cre­
ate coarser versions of the original signal through elim­
ination of the finer details which correspond to higher 
frequency phenomena. We want to be able to identify 
large trends in lower resolutions and include spatially 
limited details in finer levels. For n = 0, at the finest 
resolution of scale space, we have the original signal 
itself 

f~(x,YjO) = f(x,y) (2) 

which is obviously the upper limit as far as fine reso­
lution is concerned. 

A Gaussian filter is mathematically expressed as a function 

(3) 



where 0" is the associated standard deviation. In applica­
tions, the multiplicative factor k may receive various values, 
creating a large array of Gaussian filters which are essen­
tially scaled variations of the core function, e.g., 

(4) 

attempts to preserve the output within a prespecified range 
[Agouris et al., 1989]. The use of a Gaussian filter, with 
standard deviation 0" as the associated scale parameter, as 
a scale-generating function satisfies the above set criteria 
[Babaud et al., 1986]. Therefore, the scale space family of a 
signal f ( Z, y) can be created as 

(5) 

A digital image is a two-dimensional discrete signal J(z,y). 
Its convolution with the Gaussian kernel 

can be used to construct its scale space family. Members of 
the scale space family may have the same dimensions as the 
original image, or, more commonly, their dimensions may 
decline in coarser resolutions. Assuming the original image 
J(z, y) to have dimensions 4096 x 4096 pixels, we can form 
its scale space family by creating m versions of the image (all 
of dimensions 4096 x 4096 pixels), each one by convolving 
J( z, y) with a Gaussian kernel of different scale parameter 
0". 

Figure 1: An image pyramid as a representation of discrete 
scale space 

However, in most applications coarser levels of scale space 
are represented by images of smaller dimensions. By con­
volving the image with a Gaussian kernel and resampling 
every nth pixel we can create a lower resolution copy of size 
4096/nx4096/n. A scale space family in which lower resolu­
tion members are represented by smaller size images is called 
an image pyramid [Fig. 1]. Various members of the image 
pyramid can be perceived as images of the same object scene 
in various geometric scales. For practical reasons the dimen­
sions of the members of the scale space family are integer 
powers of two. Typically, the image pyramid of an original 
image of 4096 x 4096 pixels includes versions of the image in 
dimensions of 2048 x 2048, 1024 x 1024 and 512 x 512 pixels. 
Fig. 2 shows two windows of equal dimensions, one from the 
512 X 512 pixel member of an image pyramid and the other 
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from the 2048 x 2048 pixel version to demonstrate the asso­
ciated differences in resolution. Both images were obtained 
by the convolution of the original 4096 x 4096 image with a 
Gaussian kernel, and by proper resampling. 

Figure 2: Two windows of equal size in pixels, one in 512 x 
512 resolution (left) and the other in 2048 x 2048 resolution 
(right ). 

The use of a Gaussian kernel as a scale-generating func­
tion offers certain advantages, most notably exploited when 
combining smoothing with edge detection. Edges are iden­
tified as discontinuities in the image function, and therefore 
correspond to zero-crossings of the twice-differentiated im­
age. The orientation independent second derivative of a 
two-dimensional function is obtained through a Laplacian 
operator 

(7) 

The associative property of convolution allows the combi­
nation of scale space generation with a Gaussian function 
G( Zg, yg) and differentiation with a Laplacian operator, thus 
substituting two convolutions by a single one 

Instead of scaling the image with G(Zg, yg) and then looking 
for edges in the smoothed image, we simultaneously smooth 
the image and extract its orientation-independent second 
derivative in a single convolution by the Laplacian of Gaus­
sian (LoG) function 

The size of the LoG operator is determined by the value of 
0" or altenatively, by the diameter w of its positive central 
region, which is related to 0" through the equation 

w = 2y20" (10) 

Scale space family generation and edge detection can thus 
be succesfully combined. By using the Gaussian kernel for 
scaling we ensure that in any scale level fewer edges occur 
than in finer resolutions and more than in coarser ones, thus 
performing proper scale space generation. This property has 
a qualitative aspect in addition to its obvious quantitative 
meaning. Edges detected in coarser levels using large 0" (or 
w) values will also appear in finer levels. The same edge can 
be traced through various resolutions, since its images dis­
playa certain degree of geometric similarity, with the degree 
of localization (closeness to the true edge) increasing with 
resolution [Lu & Jain, 1989], [Witkin, 1983]. This is demon­
strated in Fig. 4 and Fig. 5 which show edges of the original 
image (shown in Fig. 3) produced by its convolution with a 



Figure 3: The original image 

Figure 4: Edges detected with a fine LoG operator 
(w = 10) 

Figure 5: Edges detected with a coarse LoG operator 
(w = 30) 

fine (w = 10) and a coarse (w = 30) LoG operator respec­
tively. In addition, the traces of edges in various resolutions 
offer a complete representation of the original signal, thus 
allowing its reconstruction [Yuille & Poggio, 1983]. 

3. DIFFERENTIAL SCALE VARIATIONS 

When representing the scale space family of a digital image 
as a pyramid, we create a number of discrete representations 
of the original image with each representation correspond­
ing to a specific scale level. However, unless the image­
generating projection is parallel, the exposure vertical and 
the object surface planar, features within the same image 
pyramid level will not have the same geometric scale, ex­
pressed as 

(11) 

with A' the image of a feature A of the object space. For 
the projective transformation governing the image formation 
process, the scale factor Si at a point (xi, yi) of the image, 
corresponding to a point (Xi, yi, Zi) in the object space will 
be given through the formula 

(12) 

where R is the rotation matrix and (Xo, Yo, Zo) the exposure 
station coordinates of the photo. It is apparent that different 
features in the same image will have different scale factors. 
In addition, the images of the same object space feature in 
two or more different images will have different scales, par­
ticularly when the exposure conditions (rotations, exposure 
stations) differ significantly (e.g., converging photography) 
or the object space surface displays high variations. In the 
extreme case, the scale becomes 0 and occlusions occur. 

Assuming each image pyramid level i to correspond to an 
average scale Si, features within this image will thus appear 
in scales 

which in general will not coincide with any of the discrete 
scales represented by the image pyramid. Image pyramids 
though are discrete representations of the scale space which 
itself is continuous. While the discrete representation is ob­
tained using only a number of values of the scale parameter (1' 

of the Gaussian kernel used to convolve the image, a contin­
uous representation is the outcome of the same convolution 
allowing (1' to receive any allowable real value. 

Scale variations between members of stereopairs become ap­
parent in digital photogrammetric operations, with match­
ing serving as a good example. In least squares matching, 
we attempt to match windows of pixels by minimizing their 
radiometric differences. This is achieved by forming one ob­
servation equation for every pair of conjugate pixels within 
a pair of approximately conjugate image windows 9L(XL, YL) 
and 9R(XR, YR) in the left and right image respectively 

The solution is obtained by allowing one of the two windows 
to be geometrically reshaped according to an affine transfor­
mation and by resampling gray values for this newly defined 

588 



window. Differences in scale are accommodated by the two 
scale factors assumed in the six-parameter affine transfor­
mation 

(15) 

and 
(16) 

Updating the above affine transformation parameters by the 
solution of the linearized observation equations 

9L(XL,YL) - e(x,y) 9'R(x'R,Y'R) + 9R", da l + 9R.,XLda2 

+ 9R",YLda3 + 9R,db1 + 9Ry xLdb2 

+ 9R",yLdb3 (17) 

we define a new window in the right image within which we 
resample the gray values. 

Scale variations will affect this procedure in various stages. 
When two image patches are represented in two different 
scale levels in a stereopair, their scale difference will be 
both geometric and radiometric. When resampling the gray 
values 9R(XR, YR) we use the original image, spreading or 
shrinking its gray values over a new area, according to the 
updated affine transformation parameters. As a result we 
produce a new window in the right image which might be­
long to the same geometric level of scale space as its conju­
gate left image template 9L(XL, YL) but will still differ from 
it in the radiometric scale space. This will have obvious ef­
fects on the observation equations, since we use gray level 
differences as observations. The same problem occurs dur­
ing digital image warping or rectification for orthophoto pro­
duction [Doorn, 1991], [Novak, 1992]. Conjugate patches in 
two overlapping orthophotos are brought to the same scale 
level geometrically, using as a reference a digital elevation 
model of the object space. Radiometrically though, these 
patches remain unequal to the same degree that the corre­
sponding windows in the original stereopair were unequal. 
This causes conjugate patches in overlapping orthophotos to 
differ radiometrically, even when their gray level histograms 
are adjusted for average and standard deviation differences. 

To accommodate for the problem of different scales, the scale 
concept has to be introduced into the matching process it­
self. This will be conceptually performed by the alteration 
of the observation equations to accommodate for scale as 

which would correspond to a matching process adapting it­
self into various scales. The above equation may be lin­
earized with respect to x, Y and s, essentially adding to the 
previously mentioned (eq. 17) linearized observation equa­
tions one term 

9R( X'R,Y'R,s'R) + 9R.,dxR + 

+9R,dYR + 9RsdsR (19) 

The added term 9R s expresses how gray levels change at a 
point whenever the scale level of the window within which 
this point is located changes within the continuous scale 
space. The term s has conceptual meaning and may be sub­
stituted by the (J' of the Gaussian filter or any other quantity 
sufficiently describing scale. 

The introduction of a scale parameter in least squares match­
ing may introduce linear dependency. The terms 9R., and 
9Ry also express gray level gradients, but are different than 
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the term 9R s in that they are highly localized and obviously 
orientation dependent. Even in the case that high depen­
dency exists, matching may be implemented in two distinct 
sets, properly constraining some of the parameters to real­
istic estimated values. To assure succesful implementation, 
matching has to be performed in the highest possible com­
mon resolution of the two conjugate patches. That will ob­
viously be the resolution of the coarser patch, and therefore 
the finer patch has to be transferred into another scale level 
using a Gaussian filter. 

4. SCALE SPACE REPRESENTATION OF 
OBJECT SPACE 

Object space can be described by the combination of two 
two-dimensional continuous signals, one (Z(X, Y)) express­
ing its geometric and another (R(X, Y)) expressing its ra­
diometric properties. Discretized, these signals are repre­
sented by a Digital Elevation Model and a Digital Radiom­
etry Model which can be together referred to as DERM. 

Each of the signals can be individually expressed in a scale 
space representation using the Gaussian kernel, thus pre­
serving the scale space family properties that we presented 
in section 2. The scale space family of the DEM will consist 
of DEM of lower resolutions, with each lower resolution level 
representing a smoothed version of the original signal. Tak­
ing advantage of the self-reciprocity of the Gaussian func­
tion which states that the Fourier transform of a Gausian is 
another Gaussian 

F[G(x)] = G(w) (20) 

we see that convolution with a Gaussian function in the 
space domain is equivalent to a filtering with a filter of the 
same shape in the frequency domain [Weaver, 1983]. There­
fore, Gaussian convolution can be perceived as filtering with 
a low-pass filter, the cut-off frequency of which is determined 
by the scale parameter (J'. Coarse scale representations of 
the D EM preserve the major geometric trends of the sur­
face, corresponding to the lower frequencies of its frequency 
domain equivalent. In finer resolutions, frequencies of higher 
order are introduced. Edge detection, with the application 
of an LoG function to the DEM signal, will locate break­
lines [Chakreyavanich, 1991J. Breakline detection can be 
applied hierarchically, similarly to edge detection in images. 
In coarse levels of scale space (large w parameter) we detect 
major breaklines in the topographic surface, while moving 
to finer resolutions we not only improve the spatial accuracy 
of these breaklines, but we also identify breaklines of smaller 
spatial extent. 

In a similar fashion, the Digital Radiometry Model (DRM) 
of the surface can be processed with a Gaussian filter for the 
generation of its scale space family. Edges in the DRM will 
correspond to positions where the radiometric properties of 
the surface present discontinuities. 

The recorded image gray values represent the DRM as al­
tered due to the geometric properties of the object space. 
In the scale space family of DRM there will exist a member 
which most closely corresponds to the image depicting this 
DRM. For a DERM with no geometric variations, the edges 
detected in the image function would correspond to discon­
tinuities in DRM. In realistic situations though, DEM is not 
flat and the image edges reflect the combined effect of geo­
metric and radiometric discontinuities. Taking advantage of 



this we can distinguish edges created by geometric and ra­
diometric discontinuities in the object space, by comparing 
the scale space of the image to the scale spaces of the object 
space. 

5. COMMENTS 

Scale space can be used to represent two dimensional sig­
nals in various resolutions. This representation can thus be 
used for images as well as for radiometric and/or geomet­
ric descriptions of the object space. It is structured and 
explorable and it can offer valuable assistance in various 
photogrammetric processes. 

The concept of scale space provides the theoretical founda­
tion for hierarchical implementation of digital photogram­
metric tasks, allowing otherwise cumbersome and time con­
suming modules to be performed quickly and effectively. For 
instance, automatic stereopair orientation can be performed 
using digital image pyramids to effectively lead the results 
to continuously improving accuracies [Schenk et al., 1991). 

However, besides implementing some modules in a hierar­
chical fashion, scale space theory can also be used to refine 
the performance of well-established processes, such as least 
squares matching and orthophoto production. By investi­
gating the differential scale variations which exist between 
conjugate features in different images, we can deduce a scale­
adapting matching process aiming at the optimization of 
least squares matching. In orthophoto production, we can 
bring features to the same radiometric and geometric level 
of scale space, thus eliminating discrepancies and improving 
its overall performance. 

In general, the advantage of using scale space theory to rep­
resent the object space is twofold. Signals describing the 
object space can be stored in a compact yet efficient way 
by recording their discontinuities through scale spa'Ce and 
in addition, image and object space can be directly com­
pared and semantic information can be extracted from this 
comparison. 
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