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The current research presents an induction-based empirical model that uses a heuristic evaluation 
function capable of utilizing the most predictive attributes in performing classification of 
satellite data. This paper discusses the structure of this model and compares its classification 
accuracy and other characteristics to those exhibited by other systems, both heuristic and 
statistical. 

The model is used to analyze Landsat data and perform classification of pixels into one of fifteen 
different categories, with a demonstrated accuracy rate approaching 100 percent. 
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1. INTRODUCTION 

In this paper we present SX-WEB, an exemplar­
based concept learning model capable of 
analyzing digitized satellite images of the 
earth's surface. SX-WEB is a modification of 
EX-WEB (Roiger, 1991), an incremental concept 
formation model of concept learning. With 
EX-WEB, learning is unsupervised and 
incremental. An unsupervised paradigm is, in 
general, inappropriate for image classification 
since most data images will not contain a 
representative sampling of all available 
classification categories. Because of this, 
learning with SX-WEB is supervised. SX-WEB 
retains EX-WEB' s ability to learn incrementally 
and to limit the use of the attributes used for 
classification to those deemed most predictive 
of class membership. However, for rapid 
classifications, SX-WEB is best used as a non­
incremental system. SX-WEB can classify in 
domains containing nominal, real-val ued and 
mixed data (both nominal and real-valued data 
exist). Because digitized images are real­
valued, we will concentrate on SX-WEB's real­
valued data structure and similarity measure. 

SX-WEB is written in PC Scheme. Scheme is a 
LISP-based language conceived in the 1970s at 
MIT by G.L. Steele and G.J. Sussman. PC Scheme 
is an adaptation of Scheme developed by Texas 
Instruments in the 1980s. 

The training and testing 
provided by Daniel Civco 

data which 
consisted of 

was 
302 
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pixels for which ground truth had been 
established. These data had been classified 
into fifteen categories: Urban (UR), 
Agriculture 1 (AI), Agriculture 2 (A2), 
Turf/Grass (TG), Southern Deciduous (SD), 
Northern Deciduous (ND), Coniferous (CO), 
Shallow Water (SW), Deep Water (DW), Marsh 
(MA), Shrub Swamp (SS), Wooded Swamp (WS), Dark 
Barren (DB), Barren 1 (B1), and Barren 2 (B2). 
Each pixel was represented by six values, 
consisting of the multispectral reflectance 
values in six bands of the electromagnetic 
spectrum: blue (0.45-0.52 Jim), green (0.52-0.60 
Jim), red (0.63-.069 Jim), near infrared (0.76-
0.90 Jim), and two middle infrared (1.55-1.75 
and 2.08-2.35 Jim). 

2. THE SX-WEB LEARNING MODEL 

In this section, we examine in detail the main 
features of SX-WEB with help from the domain of 
Landsat data images. We present SX-WEB's 
exemplar-based similarity measure and 
evaluation function. We conclude this section 
with a complexity analysis. 

2.1 Representing real-valued data with SX-WEB 

The primary data structure used by SX-WEB is a 
three level tree. Figure 1 shows the general 
form of this tree structure. The nodes at the 
instance-level of the tree represent the 
individual training instances that have been 
used to define the concept classes given at the 
concept-level. For the domain in question, each 
instance-level node contains an attribute-value 
list consisting of the spectral band 
identifications together with their specific 
values. The values found within the attributes 
of the instance nodes are used by SX-WEB' s 
exemplar-based evaluation function to classify 
newly presented instances whose classification 
is unknown. 

The concept-level nodes of the tree in Figure 
1 store the means and standard deviations of 
the attributes found within their respective 
instance-level children. That is, concept C, 
contains the means and standard deviations for 
the attributes found within II' I21 13 and I 4 " 

Figure 2 shows the mean and standard deviation 
scores for the root-level node and the fifteen 
concept-level classes formed with a training 
set containing 155 instances. SX-WEB uses these 
mean and standard deviation scores to determine 
those attributes most predictive of class 
membership. 

To illustrate this, consider Figure 2 and the 
mean values for the attribute BLUE. The 
smallest mean score for the attribute BLUE is 
71.4 and is found in the concept class 
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Figure 1: The three-level tree structure of SX­
WEB. 

representing SHALLOW WATER (SW). The largest 
mean value for BLUE is 149 and is found in the 
concept class BARREN 2 (B2). To determine 
whether BLUE is an attribute predictive of 
class membership, the standard deviation of the 
attribute BLUE in the root node (sd=20.63) is 
used to normalize the mean scores of all 
concept-level children. That is, each pair of 
mean values for the chosen attribute are 
subtracted from one another. The absolute value 
of each subtraction is then divided by the 
standard deviation of the attribute found 
within the root node. These standardized 
difference values are summed and divided by the 
number of paired attribute computations that 
have been made. This gives an average 
standardized mean difference value for the 
attribute relative to the root node. If this 
average difference is larger than a user 
specified threshold value, the attribute is 
considered to be predictive. Making this 
computation for the attribute BLUE results in 
a value of approximately 1.075. If the 
predictiveness threshold is set at 1.0, BLUE is 
then determined to be a predictive attribute. 
Figure 3 shows the predictiveness scores for 
the attributes found within the 155 instance 
training set. 

Finally, family resemblance scores are stored 
within the root node and each concept-level 
node. Family resemblance scores computed from 
the 155 instance training set are shown in 
Figure 2 in the final column, labeled FR. 
Family resemblance scores form the basis of 
SX-WEB's evaluation function by giving a 
measure of the overall similarity of the 
exemplars making up individual concept classes. 
The concept class with the lowest family 
resemblance score is Shrub Swamp (SS). As we 
will see in section 2.3, those concept classes 
containing highly similar instances will have 
lower family resemblance scores. 

2.2 Computing the similarity of two exemplars 

SX-WEB uses two formulas to compute similarity. 
One formula is used when attributes are nominal 
or mixed and a second similarity measure is 
used when attributes are strictly real-valued. 
Once again, we will limit our discussion to 
real-valued exemplar similarity. 

To compute the similarity between exemplars El 
and Eu the absolute value of the difference 
between each attribute value in El and its 
corresponding attribute value in E2 is divided 
by the standard deviation of the attribute 
found in the concept-level node being 
considered for instance classification. These 
standardized differences are summed over all 
attributes. Finally, the sum of the standar­
dized differences are divided by the number of 
attributes giving an average standardized 
difference value among the attributes of El and 
Ezo Notice that similarity scores closer to 
zero mean greater similarity between two 
exemplars ° 

Blue Green Red Near IR lR1 lR2 FR 
ROOT: mean 94.65 39.30 47.28 52.77 49.39 38.53 
std. dev. 20.63 12.73 23.54 23.94 27.00 26.48 1.1083 

UR mean 108.80 46.10 56.90 63.00 80.00 43.90 
std. dev. 5.59 2.28 3.96 5.44 3.23 2.28 1.1635 

A1 mean 80.90 34.10 28.80 34.20 75.60 21.80 
std. dev. 1.37 0.57 0.63 2.57 1.51 1.14 1.0904 

A2 mean 82.10 34.60 33.50 10.90 80.30 24.70 
std. dev. 0.99 0.70 0.71 2.23 2.16 1.25 1.0804 

TG mean 85.55 39.91 37.27 50.45 11.64 35.55 
std. dev. 1.51 1.51 1.49 3.17 2.20 1.63 1.0785 

SO mean 99.70 42.40 65.10 82.70 61.50 77.00 
std. dev. 1.64 0.84 1.66 1.16 3.50 1.89 1.1484 

NO mean 93.20 37.10 53.10 67.20 30.20 60.80 
std. dev. 1.69 0.99 1.37 1.32 3.08 1.40 1.1111 

CO mean 77.60 28.00 27.20 66.70 61.70 22.20 
std. dev. 1.07 0.94 1.75 3.77 4.81 3.26 1.1631 

SW mean 71.40 21.60 19.40 11.80 8.10 3.00 
std. dev. 1.78 0.97 0.97 1.03 1.52 1.15 1.1211 

OW mean 77.10 25.20 24.70 15.40 11.20 5.70 
std. dev. 2.02 0.92 1.34 0.70 1.14 0.95 1.0773 

MA mean 86.70 33.50 39.30 43.70 73.50 39.00 
std. dev. 2.16 1.35 2.54 2.54 4.84 2.94 1.1587 

ss mean 81.60 29.50 33.70 42.20 71.80 33.40 
std. dev. 1.51 0.53 0.67 0.92 1.14 1.17 1.0753 

WS mean 83.90 30.60 35.60 50.90 64.40 29.90 
std. dev. 1.29 0.52 1.07 2.23 2.59 1.37 1.1336 

DB mean 107.60 51.30 77.00 73.50 23.10 78.40 
std. dev. 2.59 2.11 3.62 4.74 4.72 3.44 1.1564 

B1 mean 123.54 60.77 75.46 85.00 61.69 31.31 
std. dev. 3.20 3.49 33.65 4.22 8.29 43.59 1.0824 

B2 mean 149.00 65.90 89.80 75.10 22.20 77.20 
std. dev. 4.67 1.52 2.30 1.52 2.53 2.04 1.1691 

Figure 2: Standard deviations, means, and family 
resemblance scores for the lSS-instance training 
set. 
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2.3 Classification and the family resemblance 
principle 

When presented with a set of training 
instances, SX-WEB builds a three level tree 
structure. SX-WEB uses this tree structure 
together with its evaluation function to 
classify newly presented instances into one of 
the concept-level classes. When learning is not 
incremental, once an unknown instance is 
classified, it is discarded. In an incremental 
learning mode, the new instance becomes part of 
the classification tree. We now examine 
SX-WEB's evaluation function. 

SX-WEB's evaluation function is based on the 
family resemblance principle (Cantor, 1979) 
which states that: 

Most prototypical members of a 
concept class share many features in 
common with members of their own 
class and few features in common with 
members of other closely related 
categories; 

From a classification point of view, this 
principle implies that new instances to be 
classified should be placed in the category 
class that will result in a best overall family 
resemblance value as a result of instance 
inclusion. Based on this, we used a method 
proposed in (Tversky, 1977) for computing class 
family resemblance. Specifically: 

FR(C) = 2/(N*(N-l» * E Sim(a,b) 

where C is the concept class whose family 
resemblance score is being computed, N is the 
total number of exemplars contained in concept 
class C, and E Sim(a,b) represents the sum 
total of all computed similarity scores between 
the class exemplars. In other words, to find 
the family resemblance score for concept class 
C, the similarity of each exemplar to all other 
exemplars in the class is summed. This sum is 
then divided by the total number of similarity 
computations made, giving an average similarity 
value for the class. Along these same lines, 
typicality is defined as the average similarity 
of one class exemplar to all other members of 
the class, or: 



BAND PRED VAL 

BLUE 1.075 
GREEN 1.134 
RED 1.057 
NEAR IR 1.192 
IR 1 1.172 
IR 2 1.055 

Figure 3: Predictiveness scores for the 
attributes in the ISS-instance training set. 

Typ(e,C) 
N 

I/N* E Sim(e,bd where bieC and bi<>e 
i 

where e is the exemplar whose typicality score 
is being computed. The exemplar that gives a 
best score for the Typ function is known as the 
class prototype (Smith, 1981). The family 
resemblance statistic represents a global 
heuristic measure of classification goodness. 
Since similarity values closer to zero 
represent exemplars with greater similarity, an 
evaluation function that minimizes family 
resemblance scores would seem appropriate. 
Based on this idea, we define the evaluation 
rule used by SX-WEB: 

Given root node N, a list L of N's 
children representing the concept 
classes to be considered for instance 
classification, and a new instance I 
to be classified; 

Classify instance I with the concept 
class in L that results in the 
largest decrease in the average of 
the family resemblance scores of the 
children in L. 

In other words, compute the average family 
resemblance score of all of N's children. Then 
take the first child C1 in L and compute the 
new family resemblance score as a result of 
instance I being added to this child. 

Now compute the new average family resemblance 
score resulting from this change to C10 
Subtract the new average family resemblance 
score from the old average. This is then the 
score for placing instance I into child C1• 
This computation is made for each child in L. 

Mathematically, since all that changes is the 
family resemblance score of the child now 
containing I and since the number of concept­
level nodes remains constant, the actual 
computation is simply: 

FR(C) - FR(C+I) 

where C is the class in which I is being tested 
for incorporation and FR(C+I) is the family 
resemblance score of class C when I is 
included. 

2.4 Complexity analysis 

A cost analysis df SX-WEB's performance can be 
made for both the training and the clas­
sification component of the learning process. 
During the training phase, SX-WEB builds its 
tree by creating links between the root-level, 
the concept-level and the instance-level nodes. 
The root-level and concept-level nodes store 
sums and sums of squares rather than actual 
mean and standard deviation values to 
accommodate the possibility of an incremental 
learning environment. 

After all of the training instances have been 
seen, the family resemblance score of the root­
level and each concept-level node is computed. 
In a hierarchy containing R instance-level 
nodes, the family resemblance score of the 
root-level node can be computed by making R* (R-
1) /2 similarity comparisons. If the R nodes are 
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evenly distributed among M concept-level 
classes, then each concept-level class will 
contain approximately R/M instance-level 
children. This being the case, to find the 
family resemblance score for one concept-level 
class will require R/M* (R/M-l) /2 similarity 
computations. Therefore, to find the family 
resemblance scores for all M concept-level 
classes will require R*(R-M)/(2*M) similarity 
calculations. 

The classification component cost analysis 
requires examining the total number of 
similarity computations necessary to classify 
a newly presented instance. To make instance 
classification as efficient as possible, each 
concept-level node stores a summation of 
instance similarity values rather than actual 
family resemblance scores. In this way, a new 
instance I being considered for classification 
into class C need only have its typicality 
score with the children of C computed. The 
typicality score for placing instance I into 
class C containing N children can be computed 
by making exactly N similarity computations. 
This typicality score can then be added to the 
present family resemblance summation value. 
From here the actual family resemblance score 
is computed by dividing the family resemblance 
summation by N*(N+l)/2. Therefore, to classify 
P instances using a concept hierarchy 
containing R instance-level nodes requires 
exactly P*R similarity computations. 

When learning is incremental, each newly 
classified instance becomes an instance-level 
node within the concept hierarchy. In addition, 
the root-level node and the chosen concept­
level node will have their statistics updated 
to reflect the incorporation of this new 
instance. An incremental learning environment 
is an advantage when concept class definitions 
need to be modified in order to reflect a 
changing learning environment. 

When SX-WEB is used as an incremental learning 
system, classification efficiency changes 
significantly. This is true because each 
instance that becomes part of the learning 
hierarchy has the effect of modifying the 
standard deviation values of the attributes 
found within the chosen concept class. This 
results in the similarity values of all 
instances within the chosen class to be 
affected. Because of this, the incorporation of 
each new instance requires the family 
resemblance score for the chosen concept-level 
class to be recomputed • Specifically, in a 
hierarchy containing R instances and M concept­
level classes where each class contains 
approximately R/M children, to determine which 
concept class will contain a newly presented 
instance I requires R similarity computations. 
Then, to update the family resemblance score 
for the chosen concept-level class requires 
approximately {R/M*[(R/M)+I]}/2 similarity 
computations. 

3. EXPERIMENTAL RESULTS 

This section gives the results obtained in 
testing SX-WEB using the derived Landsat TM 
data set previously described. The first three 
experiments test SX-WEB using all six spectral 
values. The remaining six experiments used 
predictiveness to test SX-WEB's classification 
accuracy when those spectral values least 
predictive of class membership were omitted 
from the classification process. 

3.1 Classification utilizing all six spectral 
values 

For the first experiment we used 155 of the 302 
instances for the training phase. This resulted 
in a hierarchy containing fifteen concept-level 
nodes with each node representing one of the 
fifteen land cover categories. Individual 



concept-level nodes each contained ten training 
instances with the exception of the Turf/Grass 
(TG) class which contained eleven instances and 
the Barren 1 (Bl) class with thirteen 
instances. The remaining 147 instances were 
then classified using SX-WEB's evaluation 
function. Of the 147 instances, 145 were 
classified correctly. One misclassification 
placed a Shrub Swamp (SS) instance into the 
Marsh (MA) class. The second misc1assification 
placed a Southern Deciduous (SO) pixel into the 
Barren 1 (B1) concept class. The overall 
classification accuracy was 98.6%. 

In the second experiment, we used sixty 
training instances, with four training 
instances being randomly chosen from each of 
the fifteen classes. Classification accuracy 
was 92.1%, with 223 of the 242 instances being 
correctly classified. When the 15 categories 
are generalized to seven categories [Urban 
(UR), Agricultural (AG), Deciduous (DE), 
Coniferous (CO), Water (WA), Wetland (WE), and 
Barren (BA)], so as to match the categories 
which were utilized in (Civco, 1992a), the 
accuracy rate increased to 96.2%, indicating 
that several of the misclassifications placed 
instances into similar concept categories. 

In the third experiment the number of training 
pixels was reduced to 45 (3 randomly-selected 
pixels for each of the fifteen categories), and 
257 pixels were then classified. Even with this 
small training set, 220 (85.6%) of the 257 
pixels in the testing set were correctly 
classified. The specific incorrect clas­
sifications can be identified in the confusion 
matrix of Figure 4. 

When the l5 categories are generalized to the 
seven categories of (Civco, 1992a), the 
accuracy rate improves slightly to 89.9% (231 
of 257 pixels classified correctly). The 
resultant confusion matrix can be seen in 
Figure 5. 

3.2 Classification util.izing less than six 
spectral values 

Three experiments were performed using the 155 
instance training set and different settings 
for the predictiveness threshold. In the first 
experiment the predictiveness threshold was set 
at 1.07 thereby eliminating the attribute RED 
from use during instance classification. (See 
figure 3 for predictiveness values.) When the 
remaining five attributes were used to classify 
147 instances, the classification results were 
identical to those of experiment one (see 
subheading 3.1) giving an overall accuracy of 
98.6%. 

For the second experiment the predictiveness 
threshold was set at 1.13 thereby eliminating 
the spectral attributes BLUE, RED and IR2 from 
use. The results showed a classification 
accuracy of 96.6% with 142 of 147 instances 
being classified correctly. 

In the third experiment, the predictiveness 
threshold was set at 1.17, which eliminated all 
attributes with the exception of NEAR IR from 
the classification process. The results 
obtained in using this single attribute for 
instance classification showed an overall 
classification accuracy of 55.8%. 

Three additional experiments were performed 
using the 60 instance training set and various 
settings for the predictiveness threshold. The 
predictiveness values (not shown) for the 60 
instance training set differed from those found 
in Figure 3. Specif ically, BLUE was found to be 
the least predictive of class membership. NEAR 
IR and IR2 were the most predictive of class 
membership. 

For the first experiment, a predictiveness 
threshold of 1.13 eliminated the attribute BLUE 
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UR A1 A2 TG so NO CO SW OW MA SS WS DB B1 B2 
UR 17 
A1 16 2 4 1 4 
A2 1 13 
TG 1 18 1 3 2 8 
SO 13 
NO 17 
CO 1 15 
SW 16 
OW 1 18 
MA 12 
SS 1 15 
ws 1 9 
DB 16 1 
B1 8 
B2 1 4 17 

Figure 4: Confusion matrix, with columns 
representing actual categories of pixels and 
rows representing classifications by SX-WEB. 

from use during classification. Instance 
classification resulted in 21 misclas­
sifications and gave a 91.3% accuracy level. 

In the second experiment, with a predictiveness 
threshold of 1.15, all attributes excepting 
BLUE and RED were predictive of class 
membership. The resulting classification showed 
215 of 247 instances classified correctly 
giving an 89% accuracy level. 

In the final experiment, a predictiveness 
threshold setting of 1.17 resulted in NEAR IR 
and IR2 being the only attributes predictive of 
class membership. Sixty two of the 242 
instances were misclassified giving an accuracy 
rate of 74.4%. 

3.3 Comparisons to other systems 

As a means of comparison of these results to 
those obtained from other methods utilizing 
similar data sets, the reader is directed to 
(Civco, 1992a). 

The results from (Civco, 1992a) 
partially summarized as follows: 

can be 

The maximum likelihood estimation resulted in 
an overall classification accuracy of 91.5%. 

A back-propagation neural network with a 6-
element input layer, a 15-element hidden layer, 
and a 1-element output layer, resulted in an 
overall classification accuracy for 468 test 
pixels of 66.7%. 

A similar network, but with both a ~-element 
hidden layer and a second 15-element hidden 
layer, resulted in an overall classification 
accuracy of 64.5%. 

It is especially interesting to note that the 
greatest number of misclassifications by SX-WEB 
(see Figure 5) were the result of misclas­
sifying Wetland (WE) pixels as Agricultural 
(AG) pixels. This misclassification was not 
present in the results found in the neural nets 
of (Civco, 1992a), although there was evidence 
of this type of misclassification with the 
maximum likelihood technique. 

4. CONCLUSIONS AND FUTURE WORK 

Recent research (Keil, 1987; Porter, 1990) 
supports an exemplar-based approach to concept 
learning. The findings of this research lends 
additional support to an exemplar-based concept 
learning paradigm. SX-WEB's similarity measure 
and evaluation function performed exceptionally 
well in the classification of pixel images 
representing fifteen different Landsat image 
types. High classification accuracy was 
achieved even when each concept class contained 
as few as three training instances. The results 
of predictiveness testing were also positive in 
that high levels of classification accuracy 
were maintained when a limited number of 
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\.IE 38 

SA 1 46 

Figure 5: Confusion matrix for generalized 
categories, with columns representing actual 
categories of pixels and rows representing 
classifications by SX-WEB. 

spectral values were used for the clas­
sification process. 

SX-WEB is currently running on an Intel (TM) 
80386-based machine with a clock speed of 33 
mhz and without a math coprocessor. The times 
needed to run the experiments specified in this 
paper were 10 to 35 minutes. This was largely 
dependent on the size of the training set. It 
is assumed that running SX-WEB on an Intel (TM) 
80486-based machine with a higher clock speed 
would significantly improve performance, 
resulting from both the increased clock speed 
and the integrated math coprocessor. Once this 
type of machine is available to the authors, a 
much larger data set will be used to 
empirically evaluate the time requirements of 
the system. 

In addition, PC Scheme has a fairly high 
overhead for "garbage collection," and it 
should be possible to rewrite the program to 
minimize this, or to implement SX-WEB in 
another language, such as C. 

The authors are currently preparing a data set 
from Landsat MSS data acquired over southern 
Minnesota in July of 1988. The limitation of 
the input to SX-WEB to the four spectral bands 
(0.5-0.6 pm, 0.6-.07 pm, 0.7-0.8 pm, 0.8-1.1 
pm) should be instructive. 

Another area of endeavor will be to utilize 
EX-WEB's abilities to perform incremental 
learning and unsupervised classification. 
SX-WEB will be trained to perform clas­
sification into two categories (Water/Wetland 
and Other), using a small subset of the 
southern Minnesota data set. The resultant 
classification tree will then be used to 
extract all Water/Wetland pixels from the 
entire data set. These pixels will then be the 
input for an unsupervised incremental 
classification using EX-WEB. This will done in 
order to further differentiate between 
Water/Wetland types. 

This classification of Water/Wetland types is 
currently being performed manually in the Water 
Resources Center at Mankato State University, 
and it would appear that automation may be 
possible. 
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