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Abstract: The problem of direct projective trans-
formation from the general to the normal case of
stereophotogrammetry is treated by means of image
correlation. Therefrom result linear equations con-
taining optimal approximate values of relative
orientation, which are to be introduced into a
post-adjustment because of the redundancy of this
method. The resulting error propagation is dis-
cussed and finaly an example for a digital stereo
pair is given

KEY WORDS: Projective transformation, normal case,
image correlation, digital stereo images.

0. INTRODUCTION

In Vol.12, No.1(1990) of the photogrammetric jour-
nal of Finland H. Haggren and I. Niini published a
method for the 2-D projective transformation of
general stereo pairs into the strictly normal case
of photogrammetry. Their method is based on the
correlation of two overlapping projectivities of a
spatial object (Thompson 1968), from which the pa-
rameters of transformation can be derived. Since
the correlation refers to metric images, its effect
corresponds to the method of linearization by re-
dundant observations, because eight homologous
points are needed. This method is already known
from (Rinner 1963) as “unconditional conjunction of
successive 1images” and delivers two components of
the base (bz,bs) and three rotations of the second
image.

The goal of the transformation to the normal case
is to obtain parallel epipolar lines in order to
facilitate the automatic search for homologous
points 1in the reconstruction of the object from
digital stereo pairs (Kreiling 1976). Thus the
parameters of Rinner’s method are not very useful,
because the normal case does not arise directly
therefrom. In contrast to this, the other possi-
bility of relative orientation, i.e. the use of
rotations only (Brandstdtter 1991), delivers the
convergency and consequently the parameters of the
desired transformation.

1. THEORETICAL ASPECTS

1.1 Condition of intersection and projective trans-
formation

Using the analytical quantities

R =[1, j, k] matrix of orientation (recon-
struction)

E unit matrix ( RTR = E )

xT = (x,y,-¢c) vector of centered image co-
ordinates

projector in the model space
center of projection

stereo base ( b = Xo"~Xo’ )
scalar coefficient (stretching
factor)

1
bT = (b1,bz,bs)
A

the reconstruction of a point X of the model space
from the coordinates x’ and x" of the two images P’
and P" (condition of intersection) reads

X = Xo'+ NR'X’ = Xo" + A\"R"X" (1.1.1)

and the coordinates in one of the two images arise
from the projection
M =RT (X = Xo ). (1.1.2)

If R does not yet contain the elements of absolute
orientation, its parameters ¢’, K, @", ¢", K' ( 2"
=difference of lateral tilts ) represent only the
relative orientation. The desired normal case ( de-
fined by the unit matrix E ) results analogously to
(1.1.2) from

ANXN = E (X = Xo ). (1.1.3)
Introducing X from (1.1.1) this relation converts
to

XN = E ( Xo + ARx -~ Xo ) = AR x

and the direct projective transformation to the
normal case is given by

T = AN/ (1.1.4)

XN = R %,

or after elimination of the unknown coefficient <t
by formation of the quotients -xn/c and ~yn/c

T1x+jiy-kic e1.X
XN = -C = -C 5
isx+jsy—-kKsc e3.X

(1.1.5)
izx+jz2y—-kzc e2.X
YN = =C = -G 5
isx+Jjsy-ksc e3.X

wherin the ei (i = 1,2,3) are the rows of R. These
equations correspond, of course, to the equations
of (Kreiling 1976) but also to those of (Haggren
and Niini 1990), disregarding the formal discre-
pancy that there the last number of the denominator
equals 1. The aim of this method is therefore, to
find the unknown orienations of the two images.

Knowing Xy, the quotient T can be determined from
2xnTan = (RX)T(RXx) = XTRTRx = xTx

regarding p? = p12+pz22+p3? = x2+y2+c? = X.X ( X.X
is equivalent to xTx ), as

{ XX p

T = = —_—,

XN < XN pn

(1.1.6)

the ratio of the two distances from the common
center of projection to the points x (original) and
xv (transformed).

1.2 Orientation from image correlation

Using b, the condition of intersection (1.1.1) can
also be written as

A'p’s b+ \'p"

from which follows after vector multiplication by
b and scalar multiplication by p" because of

(1.2.1)




(p"xb).p" = 0 the condition of coplanarity

(p’ x b).p" = 0. (1.2.2)

The vector product is equivalent to p’xb=p’7B, if

0 -bs b2
B = bs o -bt |,
-b2 bi 0

and by means of p = R x (1.2.2) converts to

p’TBp" = x’TR’TBR"X" = x’TCx" = 0. (1.2.3)

It contains the matrix € of correlation as it is
used in (Rinner 1963) and put into projective re-
lationships by (Thompson 1968). A more detailed

structure may be obtained from
’

i -
c=1|34 |8 [ i3 k] =
kT
(i"xi’).b  (3"x1’).b  (k"xi’).b
= [ (1"x3’).b  (3"x3’).b  (K"xi’).b |, (1.2.4)
(1"xk’).b  (3"xk’).b  (k"xk’).b

which shows the connexion with the unit vectors of
the two camera systems.

C has two important properties (Thompson 1968):

1. From

Cixo’ = 0 and Cx" =0 (1.2.5)
(rank(€) = 2) result the coordinates xo of the

epipoles.
. The (&ualistic) transformations

h’ = ¢ x" and h" = €7X’ (1.2.6)

deliver the coefficients of the epipolar lines
h’.x’=0 and h".x"=0, i.e.
the geometric loci of homologous points.

Due to the homogeneity of (1.2.3) only a matrix

Z = (1/c32)C (z32=1) (1.2.7)

can be calculated (Rinner 1963), where csz is the
probably biggest component, but it can be used in—
stead of C without any limitation,since (1.2.5) is
homogeneous too and the h of (1.2.6) contains coef-
ficients of homogeneous equations,where common fac-—
tors do not have any influence. As for further con-
siderations of this paper, the calculation of the

coordinates of the epipoles is

1.3 Reconstruction of the model

Regarding R = E , from the two formulas (1.1.1) of
reconstruction results their difference

AUXN= AN xn’ = - b |.yN" BN
scalar multiplications by a

yield therefrom because of

and the successive
vector ynT=(c,0,xn)

xn(1) yn(i) = 0 the expressions
b.yn" b.yn’

AN’ = and A= - (1.3.1)
XN .yn" XN yNT

for the stretching factors, depending only on the
base and the image coordinates of the normal case.
If rotational relative orientation is to be used,
the base takes the form b7 (1,0,0) and the
formulas of (1.3.1) change by means of b.yn=c,
XN ynT=c(xnT=xn"), xnt.yn=c(xn"~xn’) to

1
AN = ANTE W= , (1.3.2)

XN =XN"

that is the reciprocal of the x-parallax. A\n ap-
proaches infinity, if xx’zxn", indicating parallel
projectors, or in other words, images of points in
infinity.

Knowing An, from (1.1.3) arises the simple formula
of reconstruction
X = Xo + ANXn, (1.3.3)
which delivers the coordinates of the model. The
well-known effect of double determination from P’
and P" enables the check of calculation and from
(1.3.3) results analogously to (1.1.6) the ex-
pression

{(X-X0) . (X-Xo)

AN (1.3.4)

AXN XN

as a final test of the reconstruction from the

normal case.

2. DETERMINATION OF THE PARAMETERS OF
TRANSFORMATION

2.1 The rotational relative orientation

This procedure is well-known from analog photo-
grammetry and is executed in such a way that the
base remains unchanged, that 1is b'=(1,0,0), the
left image P’ is moved only by tip ¢’ and swing K,
the right image P" by tilt £, tip ¢" and swing K.
Thus the movement of P" is to be described by the
orientation matrix (Wolf 1974, p. 533)

of main interest.

One restriction must be obeyed, COSPcosk ~-cosdsink sing

which results from possible 1i- R'=] singsindcosk+cos@sink -sin@sindsink+cosgcosk -singcosd | (2.1.1)
nearities among the rows of the -cos@sindcosktsin@sink  cosgsindsink+sinfcosK  cosQcosd
(8x8)-matrix for the determi-

nation of the eight components

of Z. In order to avoid such singularities, in and the movement of P’(2'=0) by

space the points of correlation should not coincide s

with planes passing three other points. Thus the cosdcosk ~cos¢sink sine

model should be clearly spatial and the points R’ = sink cosk 0 (2.1.2)
well-distributed. -sindcosk  sindsink cose
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The correlation matrix (1.2.4) results now because
of bz=ba=0 in




iz’i2"-i2798" i3’ J2"-i27Js" is3’k2"-i2’ks"

C = | Js’iz"-J2’i3" Ja’je"-j2’3a" Js'ka"-j2’ks"
ks’i2"~kz2’i3" k3’J2"-kz2’3Js" ka’'kz"-kz’ks"
(2.1.3)

and contains only the second and third components
of the i, j, k.

2.2 Computation of the parameters

First of all it is to be assumed that the coor-
dinates xo0’, yo’ and xo“, yo" of the epipoles are
already calculated from

ZI"%’ = 0 and Z xo" = 0.
They are the images of the base given by

Xo’xo’ = R’Tb and Xo"xo" =-R"Tb,

or
X0’ cos ¢’ cosK’ xo " cos®"cosK”

Xo’lyo’|=]|-cos®’sink’| and X\o"|yo"|=-}|-cos¢"sink"|,
-C sine -G sin¢”

from which independently from Q" follow

yo -C
and tan¢ =
X0 4 Xo02 +yo?

tank = - (2.3.1)

for both images. By means of these parameters R’=
=[1’,3’,k’] is known.

The still missing parameter " of R" may be cal-
culated now from any component of (2.1.3). The best
way is to use the third column

(iz2°cos®" + i3’sin@")cosd” = c32213
(j2’cos®" + js’sin@")cose" = cszzzs
- k3’sinQ" cos¢” = csz2z33

and to eliminate cos¢” by

C32233
€0s9" = —————
- ks’sing"

Therefrom the two symmetric possibilities
233 12’

tan'= =
z13 ks’ - z33 1is’

233 j2’
= (2.3.2)
223 k3’ - z33 J3’

arise for the determination of £, which result
from the fact that the transcendental problem of

orientation has been Jlinearized by more obser-
vations than necessary. Morecover, € 1is calculated
irrespective of the conditions of rectangularity
and normalization of the unit vectors 1, J, k, so
that an iterative post-processing must take place
in order to get an algebraically and stochastically
consistent set of parameters.

2.3 Adjustment

The rotation matrices of section 2.2 undoubtedly
will be very close approximations (R) to the most
probable solutions R. Hence small additional ro-
tations dR will give the final position of the
images according to

0 -dKk de¢
R = dR(R) = (E+dA)(R), dA = dk 0 -d@
-d¢ d@ O

By means of a vector v'=(vx,vy,0) of the residuals
of coordinate measurement and by neglecting quanti-
ties of second order, (1.2.3) turns to

(x’+v’ )T {(E+dA’ ) (R’ ) }TB{ (E+dA" ) (R") } (x"+v" )=

=XCTC)X" V' T(C)X"+X’T(C)v'+(p’ )TAA’TB(p" )+
+(p’)TBdA" (p")=0,

wherein (€)=(R’)TB(R") and (p)=(R)x. Because of

-
0 -d¢’ -dK’
dA’TB = 0 0 0 s
0 0 0
r
0 0 0
BdA" = de" -de” 0
dKk" 0 -do"

and using the substitutions &p=x’7(C)x"(=parallax),
vTO)x"=¥’T(h'), xX'T(C)v'=(h")Tv" (according to
equ. (1.2.6)), one linearized coplanarity equation
(without round brackets at h and pi) reads

5p + h’.v’ + h".v" = p1’p2"de’ + p1’p3"dK’ -
- (p2"pz’+ps"pa’ )}d2" - p1"p2’de" - p1"ps’dK"

and represents formally the general case of least
squares adjustment, i.e. conditions with unknowns.
But as the residuals of one equation do not appear
in any other equation (Tab. 2.3), the procedure can
be simplified by introduction of the fictitious
residuals (Wolf 1968, p.105, Rinner 1972, p.402)

w = hi1’vx'+h2’vy  +hi1 "vx "+h2"vy "
and the related weights
1 hi1’2  h2’2 "2 h2"2

—_— + + + s
g gx’ gy’ gx" gy”

Residuals

unknowns Par.

e

Vx Wy Tvx vy Tvx Ty v vy YL

"lde’dK’ dR"de"dK"| Bp

N -

8

B R E 8 B | 3p
E B B @ B | 52

B B B B | "M @ B B B | Ops

Tab. 2.3: Scheme of the linearized equations of coplanarity
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which convert to

1/9 =02 ( h1’2 + h2’2 + hy"2 + h2"2 ), (2.3.1)

if the a priori variances ox?2 = oy2 = 02 of the
measured coordinates are equivalent. Adjustment and
error computation correspond therefore to the rules
of customary adjustment of weighted observation
equations. In this way, also more than eight points
can easily be used for image correlation without
adjustment of the calculation of Z where the con-
dition det(Z)=0 must be obeyed (Haggren and Niini
1990). Thus Z can only deliver approximate values
of relative orientation.

The results of the adjustment will be the sclutions

da’T=(de’dK’), da"T=(dQ"de"dK")

and the matrix of dispersion

Q11 @iz

8a = 02Q = ©% (2.3.2)

@127 Qo2

containing instead of the estimate s2 the known a
priori variance o2 and the submatrices Qi1 be-
longing to P’ and @22 belonging to P". @12 in-
dicates the stochastic correlation between the
images, which influences the reconstruction of the
model but not the transformations into the normal
case. Hence the dispersion of the rotation P’-->Pn’
will be

?

0 0 0 0 0 0
Sa’= 0% = 02@a’ = | 0 O¢e Cok
0 Qi1 0 OJek Okk
and of the rotation P"—->Pn"
Oon Oge Opk
Sa" = 0%2Qz22 = 0%Qa" = | Ope Goe Oek
Ok OoK OKK
3. NORMAL CASE

3.1 Transformation

By means of the calculated elements of relative
orientation, the transformation (1.1.4) will yield
image coordinates xn of the normal case. Using now
eight points xv for a correlation of the trans-

formed 1images, the result must be, because of
R’=R"=E, the easily predictable matrix

0 0 © 0 0 O
In=Ch =EBE=E |0 0-1 E=10 0-1

0 1 0 0 1 0
as a global check of the whole procedure. The
detailed test may be performed by the inverse

transformation x = tRTxy from the normal case to
the real situation or analogous to (1.1.5)

i.xn J.oxn
(3.1.1)

y = -¢
K. xn K. xn

These formulas will be needed also for the inevi-
table transformation of pixels from the normal to
the original 1images in connexion with the inter-
polations of grey levels by resampling.

The search for homologous points (pixels) is to be
executed now in P’ along the epipolar line h’.x’= 0
with
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0 0 O x" 0
h’= Cux" = | 0 0 ~1 y'| = {c |,

0 1 0 |]|-c y"
i.e. cy’ —¢y" =0 (3.1.2)
or y’=y"sy and in P" along the epipolar line
h".x"= 0 with

0 0 x’ 0
h'=z CuTx’ = 0 0 1 y'| ==l¢ |,

0 -1 -c y’
i.e. - cy' +cy’ =0, (3.1.3)
hence y’=zy"=zy too. This implies that, of course,
all homologous points are situated at identical
parallel epipolar 1lines in the very same plane

(Haggren and Niini 1990).

3.2 Propagation of errors concerning transformation

The influence of small variations onto (1.1.4) is
impiicitely given by

drxn + Tdxn TdAXn + Rdx

or in scalar notation after regrouping
et1.dx - xndt

@2.dx — yndt
es3.dx + cdrt.

t( dxn + yndK + cdeo )
T( dyn - xndK - cd? )
T( xndo - ynd@2 )

monon

dt can be eliminated by the third equation and,
considering t=—es.x/c from the third component of
(1.1.4), the differential relation

dxn = Bada + Bxdx, (3.2.1)

with

i XNYN  —C2+XN2 ~—YNC de
Badaz— de

c | c2+yn? ~XNYN XNC dK
and

1 XNi3+Cid XnJ3+cit dx
Bx dx= dy

es.x| yniztciz ynjs+cjz
results, where Ba contains the well-known co-
efficients of small rotations and Bx indicates the
influence of small coordinate shifts in the origi-
nal image. If these differential movements are
stochastic quantities, the uncertainty of xa re-
sults from the expectation Sn=E{dxndxnT} (Pelzer
et al. 1985) because of E{dadxT}=0 (da and dx are
independent!) as

E{(Bada)(Bada)T} + E{(Bxdx)Bxdx)T} =
BaE{dadaT}Ba™ + BxE{dxdxT}BxT =

BaSaBaT + BxOZEBxT
02 (Ba@QaBaT + BxBxT).

Sn

0w

(3.2.2)

Assuming that the original images are very close to

the normal case, i.e. R ~ E , the second part of
(3.2.2) converts, because of e3.x=-¢c and
1 ¢ O dx
Bxdx = — dy | = Edx,
[ 0 ¢
to BxBxT=E. In this case, the uncertainties of the

coordinate measurement add directly to the un-




certainties from relative orientation and its
fictitious weights (2.3.1) take the form
1/9 = 2 02 ( y2 + ¢2 ) (3.2.3)

because of (3.1.2) and (3.1.3). It shows the fact
that, in the normal case, the weights decrease
strictly with y only. As weights do not influence
very much results of adjustments, relation (3.2.3)
could also be used for images which do not deviate
to much from normal position.

3.3 Propagation of errors concerning reconstruction

After relative orientation and transformation to
the normal case, the uncertainty of the model will
depend on the dispersion 8y (3.3.2) of the image
coordinates xn. Since small variations of X read
( using the left image P’)
dX = dinxn’ + Andxn’, (3.3.1)
as derived from (1.3.3) by differentiation, the
uncertainties result again from the expectation
Su E{dXdX"}, i.e.

S o= E{dn2lxn’xn’ T + An[xn’E{chndxn’T}

FE{dANdXN I T] + ANZE{dxn’dxn’T}.

By means of the differential form

dxn " ~dxn’

dA\N = = A2 (dxn"-dxn’) (3.3.2)
(xu"=-xn’)2

of equ. (1.3.2) the expectations are:

E{dANZ]} = AN4(Ox"x"4+0x’ x"=20x"x" ),

E{chndxn’T} = \n2 [ Ox*x"=0Ox’'x* Ox "y +0Ox'y* 0 }

Ox*x"~0Ox’x’
E{d\ndxn’}=hn2| Ox y =-0Ox'y’ |,
0
Ox'x* Ox'y’ 0
E{dxn’dxn’T}=} ox'y’ oOy’y’ O
o] 0 0

and
the co-variances of the correlation P’-P
taken from Sn’"=E{dxy’dxn"}, i.e.

regarding E{da’dx"T}=E{dx’da"T}=E{dx’dx"7}=0,
" may be

for the uncertainty of a stereoscopically recon-
structed model. It is seen that An=1/(xn"-xn’) re-
presents the dominating factor and that the first
term of this relation will have the most important
influence at the limits of accuracy. Thus quality
control of stereophotogrammetric evaluation should
focus mainly on this expression in order to avoid
regions of insufficient precision.

4. NUMERICAL EXAMPEL

The following page contains a stereo pair (1,2)
taken by a Rolleimetric 6006 (c=51.18) in general
positions. These two images are to be correlated in
order to get their relative orientation. The coor-
dinates of the points of correlation are (in mm):

p’=1 pP"=2
X y X y
1] ~10.620 1.694 -1.851 2.316
2 8.308 0.808 14.936 1.613
3] -16.623 14.596 -7.583 13.604
31 17.472 13.804 22.767 17.806
5] -11.904 -1.314 | -15.519 -0.481
6] 14.764 -2.293 1.799 -1.931
7] -21.802 6.968 -18.058 6.299
8| -12.778 8.770 ~4,346  8.746
Result of computational correlation:
-0.00391 0.26581 0.01067
Z = 0.28609 0.01536 -0.99664 |,

~0.00645 1.00000 -0.01313

det(Z) = -0.0001351 4 0 because of neglecting the
conditions of orthonormalization.
Provisional epipole in P’:

(x0’)= 192.457 (yo’)= 1.476
Approximate rotations of P’:
(&) = -16.546 (K ) = -0.488
Provisional epipole in P":
(x0")=-178.264 (yo’)= -0.569
Approximate rotations of P":
(@) = 17.799 (K') = -0.203
(52) = ~-0.868

The rotations are given in grads.
Matrix of correlation from
(2)=(1/c32)(R")TB(R") =

-0.00404 0.26580 0.01111
0.28548 0.01706 -0.99454
-0.00696 1.00000 -0.01310

SN’ = | ox'x® Oxcy" | = O Ba'Qa'"Ba'T, Error equations:
Oy’ x" Oy'y" Nr.  d#’ g’ dg as" i 5p g
/ 1 4.81 -141.38 -23545.03 28.22 -829.52 0.0500 1.0
2 17.77 -1129.97 -2524.54 -0.18  11.25 0.0118 1.0
Qa’ "= o7 and Q12 from (2.3.2). 3 -36.4 132.58 -2731.04 314.63 ~1147.68 -1.0271 1.1
Q12 4 511.63 -1679.62 ~2736.65 -106.82 351.20 -1.1611 1.1
5 ~1.71 ~-73.60 ~2358.54 -35.51 -1525.32 -0.0885 1.0
Finally, there results the somewhat long but useful 6 -71.63 -1360.76 -2274.17 -29.84 -566.33 -0.1081 0.9
formula 7 -45.25 348.38 ~-24798.64 224.47 -1731.81 -~0.6591 1.0
8  7.05 -41.83 -2608.91 162.05 -963.52 -0.6622 1.0
OxXx OXY Oxz xN'2 xnynT -xn’C
Su = ovy ovz | = A*(Ox"x"+0x’x’=20x"x") N2 -ywe |+
symmn. ozz symmetric c?
) 2Xn7 (Ox x"=0x " x* ) YN (Ox x " =0x x? J+XN (Oxy ' —Ox y* ) =C(Ox*x"=Ox"x") Ox:x’ Ox'y’ O
+AN3 2yn’ (ox"y =Ox'y’) =c(Ox"y’—Ox’y’ ) |+ n? ay'y 0
symmetric 0 symmetric 0
(3.3.3)
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Inverse matrix (units 1.10°8):

8.484 0.902 1.076 4.334 -1.887
0.902 1,768 -0.871 -4.126 1.276

Q= 1.076 -0.871 0.521 2.128 -0.812 |.
4.334 -4,126 2.128 20.392 -2.079
-1.887 1.276 -0.812 -2.079 1.517

Standard error of adjustment: so=%0.117
Standard error of measured cordinates: s =+1.6um
(fictitious weights gx5000)

Solutions:
d#’=~0.182 dK’= 0.025 dp=-0.010  d#"=-0.237 dK"= 0.023
+ 022 + .o10 + .005 + .034 + .009

Definitive rotations:

@’ =-16.728,K’=-0.463,502=-0.878,4"=17.561,K =-0.180

Definitive matrix of rotation of P’

0.965449 0.007025 -0.259756
R’ = |-0.007275 0.999974 0.000000
0.259749 0.001890 0.965674

containing the elements for the transformation of
image 1.

Transformed image 1 (Pn’)
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