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ABSTRACT 

Digital photogrammetry is concerned with the development of algorithms to automate photogrammetric tasks. 
The majority of efforts though are focused on single stereopairs. This paper addresses the task of simultaneously 
matching conjugate windows from multiple overlapping images. After establishing a theoretical understanding 
of the problem, we introduce several approaches and present the associated mathematical principles. We report 
on the advantages and disadvantages of each one, discuss various implementation issues and in conclusion, we 
examine potential applications in photogrammetric procedure. 

1. INTRODUCTION 

Digital photogrammetry has recently emerged as one of the 
most promising and multi-faceted photogrammetric subfields. 
A solid body of research work and a wide array oftopics have 
laid the foundation for the evolution of the photogrammetric 
procedure. Among the research topics, automatic matching 
is one of the most challenging. 

'Digital image matching attempts to identify sets of conju­
gate entities from two or more overlapping images. From 
the diverse set of matching techniques [Lemmens, 1988], 
least squares matching is a popular choice [Ackerman, 1984J. 
Even though there already exists substantial work on this 
subject, most efforts have been focused on the stereomatch­
ing case, which involves a single pair of images. This paper 
deals with simultaneously matching windows from multiple 
overlapping images using least squares techniques. The sig­
nificance of this issue lies in the impracticality of handling 
single models at the time when processing large blocks is 
common practice in the photogrammetric industry. Success­
ful and efficient completion of multiple image matching is 
expected to contribute significantly in the transition of digi­
tal photogrammetry from an experimental to a production­
oriented status. 

Significant research in the area of multiple image matching 
can be found in [Griin & Baltsavias, 1988],[Heipke, 1992] 
and [Helava, 1988J. In this paper, we present alternative ap­
proaches to the subject by introducing geometric constraints 
and performing matching in the object space. The general 
least squares matching procedure is discussed in detail and 
is subsequently expanded to accommodate multiple image 
windows. We explore the theoretical issues of the proposed 
approaches and establish the corresponding mathematical 
principles. Then, we report on their advantages and disad-
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vantages from a photogrammetric point of view and address 
several implementation issues. 

2. LEAST SQUARES MATCHING 

Least squares matching techniques attempt to match win­
dows of pixels by establishing a correspondence between 
them which minimizes the differences of their gray values. 
Assuming gL(XL) YL) to be a window of nl X n2 pixels in the 
left image, and gR( x'R, y'R) an equal size approximation to its 
conjugate position in the right image, the objective is to es­
timate a new location of the right image window gR( XR, YR) 
such that the gray value differences 

(1) 

are minimized. The estimation is performed by the trans­
formation of the coordinates (x'R) y'R) and resampling of the 
corresponding gray values. The coordinates of the two win­
dows are related through a perspective transformation to 
a common surface patch in the object space. Taking into 
account the very small size of the windows to be matched, 
their coordinates are assumed to be related to each other by 
a 6-parameter affine transformation 

and 
YR = b1 + b2xL + b3YL 

With linearization, the equations 

become 

(2) 

(3) 

(4) 



with the terms gR", and gR. expressing the local gradient of 
the right image function in the x and Y direction respectively 
as 

and (6) 

By differentiating and substituting the affine transformation 
parameters, the observation equations become 

gdxL,YL) - e(x,y) gR(X'R,YR) + gR",dal + gR",xLda2 

+ gR.,YLda3 + g~dbl + gRy xLdb2 

+ g~YLdb3 (7) 

One observation equation is formed for every pair of pixels 
from the left and right image templates, resulting in a total 
of nl . n2 equations for templates of size nl x n2. Using 
matrix notation we have 

- e = Ax-l (8) 

where the vector of unknowns x is 

(9) 

and each element of the vector of observations I is of the 
form 

1 = gL(XL,YL) - gR(x'R,YR) 

while each line of the design matrix A is 

The least squares solution is 

(10) 

(12) 

with P the associated, typically diagonal, weight matrix. 
By using the transformation parameters obtained through 
the least squares solution to update the coordinates and 
res ample gray values at integer grid coordinates, a new right 
image window g1(x1, y1) centered at 

and 

(14) 

is selected as conjugate of the stationary left image template 
gL(XL, y£). A new set of observation equations is formed 
and solved. In this manner, the true conjugate window 
gR(XR, YR) is identified as the window gR(xR, YR) at which 
the least squares iterated solution is converging. It is com­
mon practice to use least squares matching as a means for 
identifying conjugate points rather than windows. Thus, we 
correspond the point (XR' YR), center of the right image win­
dow, to the point (XL, YL) of the left image. The maximum 
allowable pixel coordinate difference between the initial ap­
proximation and the final solution for which the technique 
can still converge is termed pull-in range. 

The great advantage of least squares matching is its flexi­
bility and the fact that it is a well-known and documented 
technique. The basic model which has been described here 
can easily be expanded to accommodate more than two im­
ages or to include various additional constraints. Radiomet­
ric parameters can also be included in an effort to compen­
sate for differences in brightness and contrast between the 
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two images, and are particularly helpful when using digi­
tized images of analog diapositives [Pertl, 1985]. However, 
a radiometric adjustment is typically performed prior to the 
least squares solution, equalizing the average and the stan­
dard deviation of gray values of the two conjugate windows, 
thus accommodating for uneven radiometric properties of 
the two images. 

3. MULTIPLE IMAGE LEAST SQUARES 
MATCHING 

3.1 Mathematical Formulation for Multiple Images 

Multiple image matching can be performed by simultane­
ously minimizing the gray value differences between all the 
possible pairs of conjugate image windows. One image win­
dow has to be kept constant and serves as the matching tem­
plate. For every pair of conjugate image windows (Wi, Wj), 

depicting the same object-space area in the overlapping pho­
tos i and j) we form the observation equations 

(15) 

For windows of nl x n2 pixels appearing in n overlapping 
photographs we have a total of (n -1) + (n - 2) + ... + 2 + 
1 = n(n

2
-l) pairs of conjugate image windows and therefore 

n(n
2
-1)nln2 observation equations. According to the general 

least squares matching approach, each pair of conjugate win­
dows is geometrically related through a six-parameter affine 
transformation 

or, conceptually 

(16) 

(17) 

(18) 

However, we cannot introduce a set of affine transformation 
parameters for every pair of image windows since that leads 
to dependency between transformation parameters. Instead, 
we can use the set of transformation parameters relating 
each window Wi to the template window Wl 

for i = 2,3 ... n (19) 

which uniquely and sufficiently describes the geometric rela­
tionships between all possible conjugate window pairs [Tsin­
gas, 1991]. Indeed, the transformation between a window Wj 

in photo j and its conjugate window Wi in photo i is uniquely 
described through the parameters relating each window to 
the template window WI as 

(20) 

with the inverse affine transformation t·l = (fli)-l defined 
as 

Substituting in equations 

(23) 



(24) 

Xl and Yl from equations 21 and 22 we can rewrite the affine 
transformation relating windows Wi and Wj (equations 16 
and 17) as a function of the two sets of parameters which 
relate each window to the template. 

Proceeding further according to conventional least squares 
approach, we have a total of 6( n - 1) statistically indepen­
dent transformation parameters, relating each image win­
dow Wi (i = 2,3, ... n) to the reference template. Therefore 
the dimensions of the associated vector of unknowns 

(25) 

will be 6( n - 1) x 1. Each set of observation equations 
(equation 15) must be linearized as following 

Each pair of pixels from every pair of windows produces one 
observation equation. Among the n(n

2
-1) distinct pairs of 

conjugate windows, there exist (n - 1) pairs relating each 
window Wi (i = 2,3, ... n) to the reference template W1' Ob­
servation equations formed by these pairs will only produce 
six nonzero elements for each line of the coefficient matrix 
A, at the columns which correspond to the parameters of 
the pi affine transformation. Observation equations relat­
ing two windows Wi and Wj (i =/:- j =/:- 1) will produce twelve 
nonzero elements per line, at the columns corresponding to 
the parameters of both the pi and pj affine transforma­
tions. The sparsity pattern of the design matrix A for the 
case of five conjugate windows is shown in Fig. 1. The di­
mensions of each block of nonzero elements (gray square) are 
(n1 ·n2) X 6, while the parameters are ordered as p2, ... p5 
and the observations as 1-2,1-3, ... ,1-5,2-3, ... ,4-5. 
The least squares solution is again 

(27) 

and the final solution is obtained after iterations. The nor­
mal matrix (AT P A) is full but the exploitation of the spar­
sity patterns of matrix A can facilitate computations and 
storage requirements. 

3.2 Introduction of Geometric Constraints 

The previously described technique attempts to match mul­
tiple images using solely the recorded gray values, without 
imposing any geometric constraints on the relative posi­
tion of overlapping images in the object space. By simply 
using the affine transformation as the geometric relation­
ship between two or more conjugate windows, their geomet­
ric interdependence, as expressed by the satisfaction of the 
collinearity condition equations, is not taken into consider­
ation. Therefore, this approach just minimizes gray value 
differences without enforcing a geometrically coherent so­
lution. Windows displaying sufficient radiometric similar­
ity can be matched even though their parallax values may 
be unacceptable. This problem can be overcome either by 
checking the resulting parallax values or, in a more robust 
fashion, by introducing geometric constraints within the so­
lution process itself. 
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Figure 1: Sparsity pattern of the design matrix for multiple 
image least squares matching without additional constraints 

Geometric constraints can be introduced either as additional 
equations [Griin & Baltsavias, 1988], or by properly mod­
ifying the expression which relates the coordinate systems 
of conjugate windows. The image coordinates (x~, Y~) (re­
duced to principal point) of a point P(Xp, Yp , Zp) of the 
object space in photo j satisfy the collinearity condition 

j J [ 'J 
xp 1 X p - X~ 

[ 
Y~ = )..j Rj Yp - Y/ 
-c p Zp - Z~ 

(28) 

or, in matrix notation 

(29) 

where R j the rotation matrix of image j, xi the ground 
coordinates of the exposure center of photo j and )..~ the 
associated scale factor. 

Backsolving the collinearity condition for the image of the 
same point P in photo i we obtain 

(30) 

and substituting this expression of X~ into equation (29) 
gIves 

j )..~ T -; 1 .... "'j 
xp = JRjRi xp + JRj(X~ - Xo) (31) 

)..p )..p 

in which we have two expressions (one for X and and one 
for y) relating the (x~, y~) image coordinates of point P 
in photo j to the (x~, y~) image coordinates of the same 
point in photo i, as a function of the exterior orientation 
parameters of both photos. Conceptually, in accordance to 
equation 18, by expanding the equation over pairs of window 
coordinates (Wi, Wj) and dropping the index P we have 

(32) 

with <p being the above described function. This function 
should be considered the object space equivalent of equation 
20 rather than equation 18 since the relationship between a 
pair of windows is described through their relationship to 
a reference window, which in this case is the object space 
patch. 



By using all potential unique permutations of photo pairs as 
observation equations, and using one window as the radio­
metric reference template, as previously described in section 
3.1, we can form up to n(n

2
-1) distinct pairs of conjugate win-

dows, or n(n2-1)n1n2 corresponding observation equations. 
Each observation equation (equation 15) can be linearized 
with respect to any preselected set of m orientation param­
eters per photo (oL ... ,o!n, o{, ... ,otn) as 

The reference template (in photo 1) has to be kept stable, 
therefore the exterior orientation parameters of photo 1 will 
be kept constant during the matching process. Thus, the so­
lution can be considered the digital equivalent of dependent 
analog orientation. Since the original model is non-linear, 
the final solution is obtained through iterations. The design 
matrix for this case will have similar sparsity pattern to the 
one shown in Fig. 1, but the dimensions of each block of 
nonzero elements will be (nl . n2) X m. After each iteration, 
the image coordinates of point P in photo j are updated 
due to changes in orientation parameters 

_ 0 8xj d j 8xj d . 
Xj - x

J
. + -. 0 1 + ... + --. d.-n 

80~ 80~ 
(34) 

and 
o 8Yj d j 8Yj d-.i Yj = Yj + J 0 1 + ... + --. CT.-n 

801 8d.-n 
(35) 

By solving the above system we inherently ensure that con­
jugate image rays intersect at a point in the object space. 
While plain least squares matching is solely a radiometric 
adjustment, the use of object space constraints to express 
the relationship of two or more conjugate windows allows 
the combination of the radiometric and geometric solutions 
in a single adjustment procedure. The model can be ex­
panded to include the object space coordinates of point P 
which can be introduced into the adjustment by properly ex­
pressing the scale factors as functions of them. In addition, 
the technique can be expanded to simultaneously adjust ob­
servations of more than one point in the object space. The 
images of all points in each photo will be related through 
a common set of exterior orientation parameters and the 
adjustment can thus proceed in a global manner. 

3.3 Matching in the Object Space 

By examining the image formation process we can extract 
some rules which can later be used in the matching pro­
cess not only as constraints but also to expand the problem 
into the radiometric and/or geometric reconstruction of the 
object space itself. 

Fig. 2 shows four image windows WI, ... W4 displaying ap­
proximately the same surface patch S in four overlapping 
images. The surface is described by two continuous func­
tions, one geometric Z(X, Y) (elevations) and another ra­
diometric G( X, Y) (gray values). Assuming a local tessela­
tion, whereby the surface patch S is represented as a Digital 
Elevation and Radiometry Model (DERM, a term analo­
gous to DEM) with a resolution of nl X n2 grid points, the 
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patch is defined by nl • n2 elevations and by an equal num­
ber of gray values. The reconstruction of the patch would 
therefore involve the determination of these 2· nl . n2 param­
eters. These parameters can be determined by defining the 
geometric and radiometric transformations which relate S 
to its images Wl) ... W4. Each image window Wi corresponds 
to a gray value function gi(Xi, yd, related to S through a 
geometric transformation 

(36) 

and a radiometric one 

(37) 

Assuming the object space patch S to be a Lambertian sur­
face, the recorded image irradiance g(x, y) (image gray val­
ues) is directly related to the surface radiance G(X, Y) (sur­
face patch gray levels). Furthermore, taking into account 
the relatively small size of the surface patch, the rather 
complex radiometric relationship between image and object 
space can be effectively approximated by a linear transfor-
mation 

gi(X,y) = T~ + T~G(X, Y) (38) 

Assuming a Lambertian light source, the values of the ra­
diometric shift (T~) and scale (TD parameters are unique for 
each image and they are functions of the surface albedo as 
well as of the angles formed between the image window Wi 

and the normal'to the surface [Horn, 1986J. 

The radiometric adjustment is typically performed prior to 
the matching process, by forcing each window Wi to have 
the same average and standard deviation of gray values as 
the reference template WI' Thus, we actually force 

i 1 
To = TO = TO and (39) 

Subsequently, the gray values gl(Xl, yd of WI are assigned 
to the surface patch S. The assignment can be performed 
either directly: 

(40) 

or through an inverse linear transformation 

G(X, Y) = g(x,y) - TO 

Tl 
(41) 

In order for an inverse linear transformation to be used, the 
parameters TO and T1 have to be determined using a priori 
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Figure 2: Overlapping image windows in the object space 



knowledge on the surface radiance, while for the correct as­
signment of gray values we must have some approximations 
of image orientation. 

Assuming a smooth surface and no extreme variations in 
exposure geometry, we can accept an one-to-one correspon­
dence between the object space tesselation and the image 
windows. Therefore, the observation equations which were 
developed in the previous sections can now be formed using 
the object space as the reference template 

(42) 

thus transferring the matching procedure to the object space. 
The geometric relationship between the image coordinates 
(Xi, Yi) of a point in photo i and its object space coordinates 
(X, Y, Z) will be in general a seven-parameter transforma­
tion 

(43) 

This transformation need not be the collinearity condition, 
as long as the seven parameters which describe the three 
translations, three rotations and one scale factor are lin­
early independent. Some of the transformation parameters 
may also be kept constant during the adjustment, if a priori 
information allows us to consider them known. 

In order for the elevation values to be computed through 
the adjustment, they have to be introduced as adjustable 
quantities. This can be performed by proper selection of 
the other six transformation parameters (pi, ... p~) to avoid 
dependencies which would lead to ill-conditioned systems. 
The linearized observation equations for this case are 

G(X, Y) - e(x, y) 

Taking into account that different pixels in the image win­
dow Wi correspond to different elements of the ground tes­
selation (groundels, [Helava, 1988]), we see that the dZ el-, 
ement of the above equation is actually a vector of nl . n2 
elements. Thus, the design matrix A of the adjustment so­
lution will have the sparsity pattern shown in Fig. 3. In this 
figure, the large gray blocks have dimensions (nl . n2) X 6, 
while the small black blocks indicate single entries. This 
pattern corresponds to the four overlapping images of Fig. 
2, without using observations in between windows. Window 
Wl has been projected to the object space during the radio­
metric adjustment and the observations relate the surface 
patch S to the windows W2, W3 and W4. A more detailed 
description and in-depth analysis of this technique can be 
found in [Schenk & Toth, 1992]. 

Conceptually, object space matching resembles matching 
with geometric constraints. Taking into account the fact 
that all images are created from the same object space patch, 
least squares matching is enforced to produce a geometri­
cally acceptable solution. Simultaneously, we are able to 
reconstruct the object space DERM. Considering that one 
photo is used to create the object space patch, it is clear 
that this technique is equivalent to dependent orientation. 
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Figure 3: Sparsity pattern of the design matrix for object 
space matching 

4. IMPLEMENTATION ISSUES 

In the previous sections we presented and analyzed the for­
mulation of least squares matching using multiple images. 
By introducing geometric constraints and performing match­
ing in the object space, consistent matching results can be 
ensured and surface patches can be reconstructed geometri­
cally as well as radiometrically. 

Approximations are obviously necessary and they can be in 
the form of conjugate point image coordinates, orientation 
parameters and/or the object space surface, as expressed by, 
e.g., an initial DEM approximation. These approximations 
can be easily obtained through an automatic stereopair ori­
entation module [Schenk et al., 1991]. Experiments have 
shown that accuracies of the order of 10 to ft of a pixel (or 
4 - 6fLm in photo coordinates) are to be expected when the 
technique is applied as a combination of feature-based hier­
archical matching and correlation methods with continuous 
updating of the results through scale space [Stefanidis et al., 
1991]. 

Automatic stereopair orientation and least squares multi­
photo matching can be ideally combined in automatic aero­
triangulation of large blocks of images, the former providing 
valid initial approximations and the latter, being the core 
module of the procedure, performing precise point deter­
mination. This fusion of more than one module should be 
expected, since initial approximations are required in aero­
triangulation. Stereopair orientation essentially performs 
automatically the task of selecting conjugate image win­
dows located in the areas where conjugate points are desired, 
the equivalent of the preparation phase in the conventional 
aerotriangulation procedure. Using these initial matching 
approximations, the images are approximately brought in 
their correct relative positions in space. This can be visually 
materialized for operator inspection, if desired, through the 
generation and continuous updating of a photomosaic. Fig. 
3 depicts a photomosaic of three images, an early product of 
the automatic aerotriangulation procedure. The simultane­
ous multiphoto matching technique can also be conceptually 
viewed as the digital equivalent of an n-stage comparator, 
allowing for the measurement of conjugate points in more 
than two images at a time. Several gross errors, associ­
ated with erroneous conjugate point identification, which 
limit the accuracy of conventional analytical aerotriangula­
tion can thus be avoided, optimizing the potential accuracies 
of the technique. 

By using a feature-driven stereomatching method to obtain 



Figure 4: A photomosaic of three photos 

the initial approximations for multiphoto matching, we en­
sure the selection of areas of sufficient radiometric variation 
which inherently lead to better matching accuracy. In ad­
dition, these areas will most likely correspond to features 
of interest in the object space, since gray level variations 
are caused by markings on the ground, and changes in ra­
diance and/or surface orientation. The use of least squares 
techniques for matching provides the additional advantage 
of producing results with objectively estimable accuracy, al­
lowing for the proper assignment of weights. Observations 
in windows of low entropy, which are typically susceptible 
to erroneous matches can be assigned smaller weights, thus 
minimizing their effect in a global solution. 

In conclusion, it is obvious that multiple image matching 
is an essential tool in digital photogrammetry. The intro­
duction of geometric constraints and its performance in the 
object space can contribute to making it more rigorous in 
theory and consequently practically improved. Combined 
as discussed with already developed modules, such as stere­
omatching, it can fully automate the aerotriangulation pro­
cedure, and significantly assist in upgrading the mapping 
process. 
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