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Regularization of ill-posed image inversion problems using a stabilizing smoothing 
functional has one weak point: Breaklines Cedges, creases, cusps, .. .) will not be 
properly reconstructed, if the parameters for smoothing are not chosen in an almost 
optimal way. Often curvature minimization is applied with global or local weighting. 
Global weighting tends to smoothen too much, whereas optimal local weighting is a 
crucial and time consuming operation. In this paper a smoothing functional is intro­
duced using locally estimated curvatures and minimizing only their residuals together 
with a functional of image grey value residuals. The amount of object surface 
smoothing can be controlled by statistical tests. This procedure is called adaptive regulari­
zation. The impact of weights is of less importance than before. The basic equations are 
presented related to the object surface reconstruction approach called facets stereo 
vision (= FAST Vision). A series of experiments is presented at this congress in another 

paper from KAISER et al. 1992. 
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1. Introduction: lll-Posed. Problems and Regularization 

Surface reconstruction as a problem of inverse optics 
belongs to the class of problems, which are ill-posed in the 
sense of Hadamard (TIKHONOV et al., 1977), i.e. at least 
one of the following conditions is not met by these 
problems: 

with A, the regularization parameter. A controls the 
compromise between regularization and data consistency. 
The qualitative assumption, expressed in the choice of a 
specific functional IiBzli, has to show physical plausibility. 
It is a very common approach to assume the reconstruc­
ted surface to be smooth. An oftenl y used functional 
expressing this assumption is the quadratic variation 
CGRIMSON, 1981! TERZOPOULOS, 1988) 

existence of a solution, (1) 

uniqueness of the solution (2) 

stability: the solution depends continuously on the 
initial data. (3) 

Problems not satisfying condition (1) may be called 
over-constrained, which is rarely the case in inverse 
optics. Problems, which do not fulfill one of the other 
two conditions (or both) can be regarded as under­
constrained CBOULT, 1987). Meeting condition (3) does 
not ensure the robustness against noise in practice. Not 
meeting (3) means, that small changes in the initial data 
cause large ones in the results. 
In order to provide numerical stability, the problem does 
not only have to be well-posed, but also be well­
conditioned CPOGGIO et al., 1985). Additional assumptions 
can turn ill-posed problems into well-posed ones. The use 
of supplementary information of a qualitative nature 
(e.g. smoothness of the solution) yields the regularization 
method CTIKHONOV et aI., 1977). Taken more generally, 
the term regularization refers to any procedure turning 
ill-posed problems into well-posed ones. In computational 
optics ill-posedness is closely related to the occurrence of 
noise. Surface reconstruction requires regularization even 
in the absence of noise in order to bridge areas, in which 
the gradients of grey value signal are too low. 
In order to restrict the space of solutions of a problem 
Az = b, a stabilizing functional IIBzl1 is introduced: 

find z. minimizing IIAz - bll2 "'" A' IIBzIl2. (4) 
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( 5) 

The surface reconstruction approach FAST Vision. used 
here, deals with discrete surface heights Zrs as parameters 
in an XY -coordinate system. Thus, the stabilizing func­
tional (5) has to be approximated by second differences, 
related to a set of facets (or grid) of the surface 
(figure 1.1): 

with 
Z - 2Z "'" Z Dxx (Z ) = r+l s rs r-l s 

rs h2 

(6) 

For some of the Zrs (those situated in corners and edges) 
it is impossible to form all of the above mentioned 
equations, because some of the adjacent grid points are 
outside the window to be reconstructed. Such equations are 
simpl y omitted. 



In the past. also functions of higher order differences of 
Zrs have been proposed for stabilization. Twomey (see 
HUANG. 1975. pp. 187) found. that any constraint. which 
is quadratic in Zrs' may be used to produce a solution 
resembling (4) with (6). This finding has been fairly 
well confirmed by RAUHALA et al.. 1989. when compu­
ting a Digital Terrain Model (= DTM) from scattered 
Z-data and comparing 15 different constraining functions. 
So. one has to use one type of constraining function. but 
in general it is not decisive. which one. 

model of 

object surface Z\X.r 

facets of 

orthophoto 

object opt. densIty 

Fig. 1.1: FAST Vision: Simultaneous reconstruction of object 
surface Z(X.Y) and optical object density 
D(X.n or object grey value function G(X.Y) 
resp. 

However. the presence of break lines in the surface or of 
other non-smooth surface elements and their reconstruc­
tion is the weak point for the application of such a 
functional. Applying the functional (6) with a large 
weight A. can lead to errors. if the terrain to be· recon­
structed really is "rough". Surface edges may degenerate 
to arcs. 
Since breaklines of topography or edges of workpieces 
play a fundamental role for morphologically correct 
reconstruction or for object recognition and for other 
postprocessing tools of object surface data. it has to be an 
ultimate goal to preserve these object characteristics as 
well as possible. Therefore. the following rule has to be 
pursued: As much regularization as necessary - as little 
regularization as possible. This rule emphazises the priority 
of data consistency in (4). and consequentl y. the 
necessity for optimal or near optimal local weights \s' 
instead of one global parameter A. In this context. there 
are many proposals (see HUANG. 1975. pp. 184, 
WEIDNER, 1991). 

Now, the new regularization principle, given here. also 
relies on a curvature functional. but with a substantial 
difference to all approaches discussed so far: We do not 
regard the expectation of surface curvature to be zero. In 
our opinion. this assumption is true very rarely. both 
globally and locally. Therefore. the approximation to 
reality only by proper weighting is very crucial. In 
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contrast to these approaches. we are mtroducmg estimates of 
local surface curvature c with non-zero expectation. We 
are minimizing only their residuals together with the 
error functional of the image grey values. i.e.: 

find z, minimizing IIAz - bll2 + )" lIe Bz - c) 112 (7) 

Here, the adaption to locally quickly changing surface 
curvatures will be obtained primarily by the estimated 
curvature values c themselves, as will be shown later. 
A. now. is of minor importance. 
The remainder of this paper is organized as follows: In 
section 2 a brief presentation of surface reconstruction by 
facets stereo vision (= FAST Vision) is given. Section 3 
reports on numerical results of FAST Vision. stabilized 
anI y by proper choice of facets or by standard curvature 
minimization. The theory of the new method will be 
derived in section 4. and in section 5 numerical 
examples in comparison with the former methods will be 
demonstrated. Finally. section 6 contains some remarks 
on open questions. 

2. Object Surface Recomtruclion by Facets Stereo Vision 
(F AS! Vision): The Basic Equatiom 

Facets Stereo Vision is a method developed by Wrobel 
(WROBEL, 1987, 1991). which fulfills the task of simul­
taneous reconstruction of object surface Z(X,n and object 
grey value function G(X.Y). The relationship of a point 
on a surface and its images in the pictures P' ,P"... can be 
described with regard to radiometric and geometric 
characteristics. If the sensor, with Which the picture was 
taken, is a metric camera, the geometric relation between 
the object coordinates X.Y,Z and the image coordinates 
x'.y' in p' is given by the well-known perspective 
equations: 

. , rll '(X-Xo hr21 '(Y -YOhr31(Z-ZO) 
x=xo - r13'CX-XO)4or23.eY-Yohr33CZ-ZO) . cK (8) 

_ rd(X-XO)4or22'(Y-YO)4or32CZ-ZO) 
y- yo- r13-(X-Xohr23,eY-Yohr33eZ-ZO) . cK (9) 

x~ ,y~ and ck are the interior orientation parameters, 
Xo,Yo . Zo and rij are the exterior orientation parameters. 
In this paper all these are assumed to be known. 
The radiometric relation between an object grey value 
G eX,n and image grey values is modelled by linear 
transfer functions T', T", ... , which are invertable: 

G eX,n = T'CG'ex'.y')) = T"eG"ex",y")) = ... elO) 

with G', G" the grey values of pictures p', p"," ... 

Of course, sensors with a different geometry can be chosen 
instead of (8), (9) and the transfer function does not 
have to be linear. Now, an image ray defined by the pixel 
coordinates x',y" and the perspective center Xo ' Yo'Zo of 
image P' may intersect with an approximation of the 
surface at XO,Yo,Zo. Then the expansion of GeX,n into a 
Taylor series leads to: 



G CXo ... dX.Yo ... dY) = G eXo,Yo) ... dG eXo,Yo) .;. 

ClG (XO .yO) ClG (XO .yO) 
+ clX . dX .;. dY . dY 

(1) 

Together with (0) this leads to: 

G'ex'.y')=T'-l(G(XO,YO) +-dG(Xo,Yo ) .. 

oG (Xo.Yo) oG (Xo,Yo) . dY) 
+ oX . dX + oY 

(2) 

The following equations, expressing the dependence of 
changes dZ in the Z-coordinates on changes dX, dY in 
X- and Y -coordinates, are known from analytical photo­
grammetry: 

Substituting (13) and (4) in (12) leads to: 

G'(x',y') =T'-l ( G(Xo,Yo) +dG(Xo,Yo) + 

dG(XOyo) 'X' ·dZ dGCXOyo) ,y.
z
' .dZ) 

+ ax J z ... oY 

CI3) 

(4) 

(5) 

Now. the functions describing object surface and object 
grey values are introduced (see fig. 1.1). Up to now 
bilinear functions are used for each facet: for a surface or 
Z-facet and for a grey value or G-facet. The complete 
representation of object surface and the complete object 
grey value function by piecewise polynomial functions. 
depending on the unknown grid values Zrs and Gk1 can 
be written as: 

GCX,y) R1GeX,Y) = L L ()(kl ex,Y) . Gk1 
k 1 

Z(X,Y) R1ZCX.Y) = L L ars(X.Y) 'Zrs 
s 

(16) 

(17) 

with known functions ()(kl (X,Y) and ars CX,Y). Splitting of 
(6) into approximate values of the object grey values 
,~, ° ° ." ° ° G(X ,Y ) and their changes dG(X ,Y ) leads to: 

G(Xo,Yo) =L L ()(klCXO ,yo) . G~l 
k 1 

dG(Xo,Yo) =L L ()(klCXo ,yO) . dGkl 
k 1 

CIS) 

Splitting of ZCKy) can be done in an analogous way: 

dZ(XO,YO) =L L ars(Xo ,yo) ·dZrs 
r s 

In equation CI5) the partial derivatives of the grey value 
function are computed from CIS): 

L L 
k 1 
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From the above given relationships the fundamental 
differential equation of digital photogrammetry is obtai­
ned: 

G'ex'.y') 

T' -l( ~ ~ ()( (Xo,yo ) 'Go .;. ~ ~ (Xo yo) dG r 7 kl kl t 7 ()(ki ' . kl + 

(21) 

In order to reconstruct an object with the derived method 
at least a second picture is needed. The values associated 
with picture p' in (21) have to be replaced with those 
associated with the pictures p",p'" etc. The evaluation of 
(21) for all pixels from all pictures leads to the following 
linear GauB-Markov model: 

ECl) x (22) 

no is the number of observation equations of type C 21) 

and nu.>:no is the number of unknowns: dGk1, dZrs and 
the parameters of r. T" etc. I is the vector of differences 
between the measured grey values G' and those grey 
values. which result from the approximate grey values of 
the object model: 

G' ex',y') - T'-l( ~" (XO yO) GO) (23) f; 1 ()(kl ' . kl/ 

This overdetermined problem can be solved by a least 
squares approach. which minimizes v!PI VI and which 
leads to the following system of normal equations: 

(24) 

PI is the weight matrix associated with the observed 
image grey values. 
As can be realized from equation (21), FAST Vision is a 
non-linear problem and the solution of (24) may be 
computed by Newton-GauB iteration. For latest details 
concerning FAST Vision see (WEISENSEE. 1991). 

F'rom now on, but only in this paper, not in practice. we 
suppose, that the parameters of the transfer functions T', 
T" ... are already given. Then, the matrix Al consists of 
two submatrices: the coefficient matrix Az for the 
unknowns Xz of the object surface and the coefficient 
matrix AG for the grey value unknowns xG: 

As the elements of Az depend on the partial derivatives 
of the grey values, see (12) and (21). linear depen­
dences of some columns of this submatrix can occur. if 
the measured grey values are constant in larger regions 
of the pictures. or if they increase or decrease linearly in 
,X - Y -space. This will cause the product 



to become a singular or at least an ill- conditioned 
matrix. In that case the image inversion problem cannot be 
solved by the equations (21) alone. unless additional 
observation equations are added in a well-defined 
procedure of regularization. 

3. Regularization of FAST Vision by Choice of Appro­
priate Facets and by Curvature Minimization 

Sufficient regularization may already' be obtained by 
choice of the appropriate size of facets. Indeed. for the 
representation of the object grey value function G (X,Y) 
In relatIonship (21) a constant ratio of 2 x 2 pixels per 
G-facet has been found to be a reasonable compromise 
between resolution and accuracy. This ratio can be used 
everywhere. It is independent of the image signals. as 
long as pixel size itself is in correct relation to image 
signal. In contrast to this Z-facets should have a variable 
size in principle. in one window already. because the 
Z-parameters in (21) depend exclusively on the grey value 
gradient. which is a space function of X. Y. The reali­
zation of that optimal idea seems to be too complicated. 
We decided for a constant size of Z-facets in combination 
with stabilizing constraints with local weights. This 
approach has many advantages as will come out in this 
paper. 

In this section the limitation of two simple stabilizing 
methods will be demonstrated: stabilization only by 
constant, rather large Z-facets and by curvature mini­
mization with global weights. 
The numerical experiments in this section are performed 
with two sterec image pairs, generated of the same 
object. It can be described as a gable roof: two planes 
with an inclination of 200 meet at a ridge. There is a 
shady plane containing the grey values from 0 to 127. 
and a plane exposed to the light containing grey values 
from 128 to 255. The simulated photographs of the object 
were taken with a standard deviation of 4 grey values 
(white noise). pixel size is 20 tJ-m x 20 tJ-m. This is the 
first image pair used in the first experiment. The 
following photogrammetric parameters are the same for both 
image pairs: image scale 1:12000. base-to-height ratio 
1:1.6. for comparison with standard accuracy of today's 
photogrammetry: 0.1 0/000 = 0.18 m, with 0 = distance 
object-image. 
The second image pair has been generated with a 
slightly different texture (see fig. 3.D: In the centre of the 
object. there is a 5x5 Z-facets region containing the grey 
value constant 127. 
The parameters chosen for the FAST Vision process are: 
size of Z-facets 2m x 2m 
G-facets per Z-facet 4 x 4 
pixel per G-facet 2.083 x 2.083 
The l2x12 Z-facets, which were selected for surface 
reconstruction. are located on both sides of the ridge 
(c. fig. 3.D. and the ridge coincides with the boundary of 
Z-facets. 
In all experiments, the iterations of FAST Vision are 
started from a horizontal surface plane through the roof. 
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Fig. 3.1: Generated pictures 
and position of the 
ridge within the 
Z-facets. The hatched 
facets represent the 
region with constant 
grey values. 

In the first experiment only the grey value equations 
(21) have been evaluated, thereby applying the 
following simple regularization procedure: increase the 
size of Z-facets till sufficient stability has been obtained. 
All the other parameters of FAST Vision have been kept 
fixed. 
Results: 
We started with the above mentioned size of 2mx 2m. 
but convergence was obtained not before a Z-facet size 
of 5m x 5m. Here. stabilization has to be paid by poor 
resolution. However, the accuracy figures, computed from 
least squares, are very good: standard deviation So of the 
observations G'. G": so= 3.97 grey values (a priori 
So = 4) . mean Sz of the standard deviations of all 
Z: 5Z = 0.042 m. which is in good agreement with the root 
mean square of true Z-errors: rms (dZ) = 0.068 m. 

The second experiment shows the performance of regula­
rization by curvature minimization. The second image 
pair (fig. 3.1) and all the other parameters. given above. 
have been introduced. For regularization only global 
weights A have been used. 

Results (see fig. 3.2 and 3.3): 
The Z-resolution has been improved from 5m x Sm to 
2m x 2m. but at the expense of a rather high regulariza­
tion parameter A. No convergence is obtained with 
A=2000. Fig. 3.3 shows. that the ridge (roofline) is flatte­
ned by a high regularization parameter A. The region 
with constant grey values lowers the ridge at this point. 
Both effects can be seen clearly in the dZ-graph. In the 
region of constant grey values. there are no deterministic 
grey value gradients. only very small stochastic 
gradients. resulting from grey value noise. Nevertheless. 
it is possible to reconstruct the surface in that region. but 
only with high regularization parameter A. High A - on the 
other hand - has a rather far extending impact on the 
surroundings of each Zrs' as can be seen from the 
distribution of positive and negative dZ-values. see fig. 3.3. 
Also. there is only a weak agreement of Sz with 
rms (dZ). Regularization by curvature minimization with 
global weights is not satisfying. 



A So rmsCdZ) Sz n i 

6000 4.260 0.245 0.0304 13 
2000 no convergence 

A global regularization parameter 

So standard deviation of urut weIght 
(in grey values) 

rms(dZ) root mean square of true Z-errors 
[metres] 

5 Z mean of standard deviations of 
Z-unknowns [metres] 

n i number of iterations on zero level 
of image pyramid 

Fig. 3.2: Experimental results for regularization 
with curvature minimization 

Fig. 3.3: Regularization with curvature minimization: 
Reconstructed roofline with A = 6000 (left) and 
dZ-graph (right). 
dZmax= +1.118 m and dZmin=- 0.335 m, the 
dark facets represent the region with constant 
grey values (left) and facets with dominant 
negative differences (right) 

4. Adaptive Regularization of FAST Vision 

This new method refers to relationship (7), Actually, it is 
based on a proposal given earlier by Wrobel (WROBEL, 
1973. 1974) for stabilization of ill-conditioned linear 
systems. Here. use is made of the curvature constraints 
(6) for every Z-Jacet as in section 3, however. with 
curvature values c, that are estimated from grey value 
observables during the reconstruction process. 

41 Derivation of an Iterative Method for Regularization 
with Constraints 

There are several computational procedures (WROBEL. 
1974) to solve the basic approach. Here. we present a 
very simple one. 
To fulfill functional (7), a system of two groups of obser­
vation equations is set up: 

V=(V1)= (A1 0).(X J_(11);P=(11 0 ) (25) 
\ v 2 \ A2 I c J 0 \ 0 P2 

\ I \ i \ -' \ J \ I 

(A 0) 
For later use we set A = \ A~ I , ' with I = unit matrix. 

The first group originates from the no observation 
equations of the FAST Vision method. derived from the 
image grey values, see (21) . The second group 
comprises the na additional from discrete curvature 
equations at the facets. with c the unknown vector of 
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curvatures. A2 is formed by D xx' Dxy and Dyy' 

obtained with (6) from the Z-facets at the start of each 

FAST Vision iteration step. P 2 is a diagonal matrix. 
representing local regularization parameters A. 
The minimization of v Tpv leads to: 

(26) 

From the second line of (25) and of (26) follows: 

This leads to: 

vTpv= vTp v (27) 
1 1 1 

i.e. the residuals of the original observation equations 

vI =A1 x -11 are also the residuals of the extended system 
(25). Similarly, it can be shown that 

• x from system (26) is equal to 
T -1 T 

Xl = (AI PIAL) Al PIll' 
• Qxx' the cofactor matrix of x from the inversion of 

T -1 (26) is equal to (AI PI Al ) • 

• and. finally. the redundancy of system 1 is the same 
as that of the enlarged system (26). 

Now. the numerical solution of system (26) can be 
performed to advantage by the block GauB-Seidel iterative 
method (WROBEL. 1974). The first iteration step (0) is 
started with an arbitrary vector x(O) . The second line of 
(26) is solved for ccO) . while x(O) is kept constant: 
ceQ) =-A2x(Q). Then the first line of (26) with ceQ) as a 

constant. is solved for xt 1) : 

(1) _ CATp A ATp A ) -1 (ALp AT (0) x-Ill + 2 2 2' . + 1 1 11 - 2 P 2 c ) . 

The full rank of Afpl Al cannot be guaranteed, but the 
sum (AfpIAl+A~P2A2)-1 has been made mvertable 
through regularization. 

On the i-th iteration step. "lith B = A{Pl.A'1+A~P2A2' the 
solutlon for the unknowns xCi+l) . cel) reads: 

(28) 
(29) 

Substituting cCl) according to (28) in (29), results in a 

blockwise Gau13-.5eidel iteration method for computing x: 

G is called the iteration matrix of the method and the 
method itself is ::alled adaptive regularization. In every 
iteration step (ij. we also may compute the residual 
'_-ectors vi D and ·v_~D. by inserting xCD and c(i) in (25). 

From these vectors the following statistical functions are 
derived: 

( .. Tp .. )' (D 
"1 1 v 1 ( sCD)2 

\ 1 (3D 

(32) 

s~ i) is the standard error of unit Il1{eight of an observation 



in group 1 and s~l.' in analogy for group 2. For FAST 
Vision sf D characterizes the goodness of fit for the grey 
values and s~D the still inherent amount of smoothing of 
the surface. These quantaties may be used for quality 
control of the reconstruction results during iteration. 
If convergence exists. then in the limit. for i-co. we 
obtain (irrespective of P 21): 

x(i) - Xl 

cel) - c 

'r~D_ "1 

v~i)_ 0 

(33) 

The results (33) are not influenced by P 2' the weights of 
curvature equations. but speed of convergence and the 
condition number of the main matrix in (26) are depen­
ding on P2 (V.fROBEL. 1974). 

For quality control. the standard errors of Xli), derived 
from the inverse of U ... ! PIAl)' may be determined 
according the same iteration scheme (WROBEL, 1974), 

However, the success and complete characteristics of the 
iteration process, described so far. will depend upon the 
iteration matrix G and the matrices behind it: 

G = CAtPI AI+A~P2A2)-I A~P2A2. As has been shown in 
detail in WROBEL et al. 1991 their properties are formed 
in essence by the rank and condition number of matrix 
AtPI AI' originating from the grey value equations. 
There are two cases. and they glve nse to two vanants, 
of which adaptive regularization is composed of: self 
adaptive regularization and pyramid assisted regularization. 

4..2 Adaptive Regularization 

FAST Vision is started with self adaptive regularization. 
applying a global weight matrix P2 = AI for the 
constraints. A should be chosen as low as possible. This. 
already, can produce the final result. if matrix (Ai PIAl) 
has full rank and an acceptable stability. The solution 
vector xCi) converges to the correct solution, irrespective 
of P 2. If the iteration tends to i-co, there is no smoothing. 
as can be seen from relationships (33), As long as i<co. 
the qualitiy of surface reconstruction can be controlled 
by statistical tests: 

• The standard error of unit weight. si D. see (3D. may 
be compared with sl a priori, in order to check the 
goodness of fit of the reconstructed grey value function 
G(X,Y), see (16). to the given image grey values G'. 
G" ... 

• Additionally. the amount of smoothing, which is 
inherent in the surface at iteration step (D. may be checked 
by comparison of the mean curvature residuals s~D, (32). 

with zero or with an alternative figure greater than zero. 
With respect to the statistical errors of the reconstructed 
surface smoothing can be tolerated to some extent. 
However. the conditions of self adaptive regularization 
will hardly exist in an entire object window. As discus­
sed earlier. weak or zero grey value gradients give rise 

to the situation. that some of the parameters Zrs' 
somewhere in the window. are very badly or even 
not at all determinable. Then, matrix (At PIAl) is 
ill-conditioned or even not of full rank. The solution 
vector x(i) still converges. irrespective of P2, but it will 
depend upon the start vectors xC 0) and c cO). This has 
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been shown in WROBEL et al. 1991. Therefore. this solution 
cannot be accepted in general. So. all parameters Zrs 
have to be examined. whether they can be accepted 

(= step 1) or whether they deserve more stabilization 
(= step 2). We sketch a procedure in short lines. with 
which the problem can be overcome. 
Step 1: Localization of unstable Zrs 
Compute the standard errors of Zrs from the stabilized 
equations (26). and compare them with corresponding 

standard errors from constraining equations alone. Zrs' 
with statistically significant differences in those errors. are 
supposed to be stable. They will be accordingl y 
processed in step 2. However. often the matrix of constraints 
(A; P2A2) is not invertible. In that case a relative 
companson of the standard errors, computed from the 
stabilized system is possible, in any way: All standard 

errors are compared with the smallest standard error 

s(Zrs\nin or with another reasonable threshold from 
experience. Zrs' with a standard error greater than the 
threshold by a constant of about 5. say, are regarded 
as unstable. The appropriate definition of suitable thresholds 
is already a matter of application. It will be discussed 

elsewhere. 
Step 2: Pyramid assisted regularization of unstable Zrs. 
By that procedure. the curvature values c of unstable Zrs 
will not any more be estimated in the least squares 
procedure as unknown parameters. By contrast, they are 
given 'reasonable' curvature values as 'observations'. zero 
values. say. and are processed accordingly in FAST 
Vision. We prefer curvature values. derived from the 
surroundings of unstable Zrs by interpolation. For FAST 
Vision. this simply means to use curvature values from 
the next higher level of surface pyramid. This variant of 
adaptive regularization, therefore. is called pyramid 
assisted regularization. 
To be more precise. those 'reasonable observations' of 
curvature. of course, are arbitrary information and may 
produce not very reliable facets. In view of photo­
grammetric practice, these facets could be marked by the 
computer and be inspected by an operator. 
To bring the overall procedure to an end, after step 2. the 
computations of FAST Vision are repeated with the now 
two classes of facets . 
It may be argued. the final result will be influenced by 
the choice of P 2 = AI at the beginnning. This objection is 
not true for the solution vector. but the standard errors 
are perturbed by the constraints: they are always too 
low. The numerical example in fig. 3.2 has shown this 
already. However, if reliable quality assessment for each 

parameter Zrs is a strict demand, the following step 3 
may be performed. 
Step 3: Refinement of standard errors of parameters Zrs. 
The amount of A in P2=AI at the beginning has had to 
stabilize the weakest parameters Zrs. After step 2. these 
are made very stable. so A may be substantially lowered. 
Again. this may be pursued globally. but could be done 
also locally in relation to the individual standard errors of 
Z which have been computed already in step 2. 
S;~·finally. the above mentioned rule - regularization as little 
as possible - can be realized. 



5. Numerical Experiments Of FAST Vision With Adaptive 
Regularization 

In this paper only introducing experiments are presented. 
However. in another paper at this congress a series of 
different examples is given. see KAISER et al. 1992. 
In order to compare the methods of regularization the 
experiment of chapter 3 is carried out again. The second 
pair of images (with a section of constant grey value) 
was used. The photogramroetric and FAST Vision 
parameters are the same as in chapter 3 .. An image 
pyramid with two levels was applied. The results of the 
experiments in fig. 5.1 - 5.3 correspond to those in chapter 3, 
see fig. 3.2 for explanation. 

A So rms(dZ) -
Sz n i 

6000 3.914 0.152 0.0279 12 
2000 3.910 0.154 0.0373 12 
2000 3.901 0.200 0.0368 66 
6000 3.9"17 0.158 0.0279 11 
2000 3.911 0.152 0.0373 11 
2000 3.906 0.182 0.0369 65 

Fig. 5.1: Experimental results: exclusively self adaptive 
regularization (above). combined self adaptive 
and pyramid assisted regularization (below) 

Results: 
• The quality of reconstruction is definitely better than 
with curvature minimization. fig. 3.2. at the same number 
of iterations! The true errors dZ at the roofline have the 
same magnitude as everywhere. with the exemption of 
the region with constant grey values. This region is not 
correctly reconstructed (nothing else had to be expected 
because 0f lacking deterministic grey values). But in 
these experiments the differences between the true and the 
reconstructed object are smaller than with curvature 
minimization (v. fig. 5.2 and fig: 5.3), This indicates a 
better interpolation in that region. due to the use of 
approximated curvature values from surface pyramid. 
being closer to reality than in the case of regularization 
by curvature minimization. So. FAST Vision with adaptive 
regularization shows up remarkable edge preserving 
characteristics . 
• As predicted by theory in section 4.1. see (33). the 
results of true errors dZ and standard error So practically 
do not differ with different regularization weight P2 = AI. 
fig. 5.l. 
l1li Also. the impact of different iteration numbers n i is 
confirmed as predicted. The reconstructed surface 
becomes rougher with increasing n i . The true errors dZ are 
distributed more stochasticalll y - as they should do 
(cf. white image noise) - than with low iteration numbers n i . 

This effect results from the smoothing influence of the 
additional observation equations (see chapter 4.1). which 
decreases with n i . 
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Fig. 5.2: Reconstructed raofline: self adaptive regulariza­
tion Cleft) and d::-graph (right) 
A = 6000. dZmax = +0.873m and dZmin = -0.195 m. 
12 iterations (above) 
A = 2000. dZmax = +1.059m and dZmin= -0.647m. 
66 iterations (below) 

l1li However. the mean but not the maximum difference 
between true and reconstructed object gets larger with 
increasing number of iterations. This seems to be a 
paradoxical result. but it corresponds to the special shape of 
the object. which consists of two planes. Therefore. this 
result probably cannot be generalized to other surfaces. 
l1li The .results of self adaptive and of pyramid assisted 
regularization can be compared in region of constant 
grey values. v. fig. 5.2 and 5.3. They do not differ much 
in that experiment. The average standard error Sz does 
not agree 'vvith the corresponding rms of true errors. This 
discrepancy could be removed. if the refinement 
procedure for standard errors. see section 4.2. step 3. is used 
subsequentl y. 

Fig. 5.3: Reconstructed roofline: combined self adaptive 
and pyramid assisted regularization (left) and 
dZ-graph (right): 
A = 6000. dZmax = +0.892 m and d::min = -0.201 m. 
11 iterations (above) 
A = 2000. dZmax = +0.819 m and dZrnin = -0.639m. 
65 iterations Cbelow) 



6. Conclusions 

The theory of a stabilizing method for ill-posed problems 
has been given. applied for object surface reconstruction 
by FAST Vision and tested with some first experiments. 
In comparison to the often used procedure of curvature 
minimization. the following merits have evolved: 

.. Surface reconstruction is definitely better. especially the 
reconstruction of edges or breaklines. 
• The results do not depend as much on the regula­
rization parameters as they do with curvature mini­
mization. So. the time consuming determination of local 
regularization parameters is not necessary. 
• The standard errors of the results are still directly 
affected by the regularization parameter. But with additional 
computer work. refined and more reliable standard errors 
may be computed. 
• In general. statistically well defined accuracy measures 
are at hand. since the approach is modeled as a GauB­
Markov estimation, 

Finally. the theory of adaptive regularization. section 4.1. 
may be transfered to other problems with ill-posedness or 
ill-conditioning. e,g. least squares image matching or 
self-calibration of analytical photogrammetry. 
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