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ABSTRACT 
Conventional bundle adjustments ignore the invariant geometrie relationships that exist between eamera pairs in a bundle of 
stereo photography. Two models for optimising eonventional bundle adjustments to take advantage of these relationships 
are developed. These models are eompared with a eonventional bundle adjustment. Initial results indieate that both 
presented models yield improved aeeuraeies when eompared to a eonventional bundle adjustment. 
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INTRODUCTION 

In the field of non-topographie photogrammetry bundle 
adjustments are used in a wide range of applieations. 
Whether implemented as a DLT or self-ealibrating model 
the purpose of the bundle adjustment is to minimise the 
residuals of all the observations. Eaeh eamera thus finds a 
position and orientation that refleets this minimisation. This 
approach is weil established for single eamera imaging 
geometry as typified by Fraser (1991). 

When the imaging is performed by a stereo eamera 
system, inherent in eaeh pair of photographs is the 
invariant geometrieal relationship of the two eameras. If 
such a bundle of stereopairs were redueed bya 
eonventional bundle adjustment the invariant eamera 
relationships between the two images of eaeh stereopair 
would be ignored in favour of optimising eaeh eamera's 
position and orientation based on the observations and 
their random errors. 

This paper reports on two methods that have been 
deveioped to optimise a eonventional bundie adjustment 
for use with stereo photography so that the invariant 
relationships are retained for all stereopairs. The 
mathematieal models are developed and the results of a 
trial eomparing the two models with a eonventional bundle 
adjustment are presented. 

THE BUNDLE ADJUSTMENT 

Slama (1980, Ch2) gives the generally aeeepted model of 
the observation equations for a eonventional bundle 
adjustment. These are of the following form: 

-
V +B~ = C 

~; 
Ei fj 

= [~} 
€ 

- - C. V= B= -I 0; a C= 

0 -I C 
V = vector of plate observation res/duals; 

V = vector of exterior orientation parameter 
observation res/duals; 

V = vector of object coordlnate observation 
residuals; 

B = matrix of partial derivatives wrt exterior 
orientation parameters; 

ä = matrix of partial derivatives wrt object 
coordinates; 

(1 ) 
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i1 vector of exterior orientation parameter 
coffectlons; 

.6. = vector of obJect coordinate coffections; 
€ = vector of plate observation descrepancies; 

C = vector of exterior orientation parameter 
descrepancles; 

C = vector of obJect coordinate discrepancies; 

The strueture of the eamera parameter portion of the 
normal equation matrix produeed by the least squares 
solution to this model is shown in figure 1. 

Figura 1 Normal equation strueture of the eamera 
parameter portion of a eonventional bundle adjustment of 
stereopairs. 

Eaeh eamera is represented by a 6x6 symmetrie sub­
matrix. The total number of eamera parameters to be 
solved for a bundle of s stereopairs is 12s. An overview of 
photogrammetrie bundle adjustment programs ean be 
found in Karara (1989, Ch6). Bundle adjustments 
developed in this study were based upon this model. 

MODELLING OF CAMERA INVARIANCE 

The invarianee that exists between the eameras of a 
stereopair may be divided into two relationships: 



a. the relative positions of the cameras (camera 
base, the exterior orientation position coordinates of 
each camera pairs perspective centres) ; and 

b. the relative rotations of the cameras (camera 
convergence, the exterior orientation rotations of 
each camera pairs coordinate axes). 

The type of invariance is dependent upon the type of 
stereo camera system used. Two stereo camera types 
considered here are: 

a. stereometrie camera systems where the invariant 
camera relationships are precisely known; and 

b. non- or semi- metric camera systems where 
cameras are placed in a fixed but not precisely 
known relationship for specific projects as typified in 
Fryer (1990). 

Sy considering type b. camera systems as representing the 
general case, the numerical values that describe the 
invariant camera relationships must be solved for as part of 
the bundle adjustment. Type a. cameras may then be 
considered as a special case and the known values applied 
as appropriate. 

Two methods were considered in modelling the invariant 
relationships: 

a. by constraint equations between the camera 
parameters of each stereo pair; or 

b. by modified collinearity equations relating the 
camera parameters of each stereopair. 

INVARIANCE MODELLED SY CONSTRAINT EQUATIONS 

An introduction to the use of constraint equations in 
analytical photogrammetry in given in Case (1961). 
Constraint equations are used to express geometrie or 
physieal relationships that exist between parameters of an 
adjustment. In this ease the parameters of interest are the 
exterior orientation parameters of the eameras. 

Constraint equations take the following form: 

vc +CtJ.. = g 
v c = vector 0' constraint residuals; 

C = matrix 0' constraint parameter 
coefficients; 

11 = vector of parameters used In constralnts; 
g = vector of constralnt constants; 

One eonstraint equation is written for eaeh physieal or 
geometrie property that is required to be enforeed. 

The base eonstraint 

(2) 

For stereo photography the required eonstraint is that the 
eomputed base distanees for all stereopairs be the same. 
As the eamera base is unknown apriori the eonstraint 
eonstant (the eamera base distanee) must be derived from 
the adjustment. At eaeh iteration the mean value of all the 
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ba ses is computed and used as the constraint constant. 
The base constraint for stereopair i is then: 

[(X/ _X/)2 +(Y/ - Y/)2 +(Z/ _Z/)2]1/2 = Bm 
Bm = mean camera base. 

(3) 

There is one base eonstraint equation for eaeh stereopair. 

The eonveraenee eonstraint 

The requirement here is that the relative orientations of the 
camera axes are eonstant for all stereopairs. This may be 
aehieved by eonstraining the eonvergence angles of the 
three pairs of eamera axes (dot products of eaeh pair of X, 
Y & Z axes) to the mean of the corresponding convergenee 
angles tor all stereo pairs. As the eonvergence angles are 
independent for each axis pair there is one constraint 
equation for each convergence angle. For stereopair i 
these are: 

R11/.R11t +R12/.R12/ +R13/.R13/ = yXm 

R21/.R21,R +R22/.R22/ +R23/.R23;R = YYm (4) 

R31/.R31J
R +R32/.R32/ +R33/.R33,R = yZm 

R11/ .. R33/ = rotation matrix elements of the 
left and right cameras of 
stereopair ;, 

yXm• y Ym• yZm = mean convergence angles for X. 
Y and Z axes. 

All eonstraint equations are non-linear in terms of the 
eamera parameters and must be linearised. Adding the 
linearised eonstraint equations to the eonventional 
eollinearity equation model ehanges equation (1) to: 

-
V +BtJ.. = C 

V Ei 
v 

V= v' 8 = 
-I 

o 
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0 
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, C= 
-I X' C 

~ C 0 g 
C = matrix of partial derivatives 0' constraint 

parameters; 
g = vector of constraint discrepancies; 

The eorresponding normal equation matrix strueture is 
shown in figure 2. 

(5) 

Eaeh stereopair is represented by a 12x12 symmetrie sub­
matrix as a result of the eonstraint equations. The number 
of eamera parameters is unaltered trom the eonventional 
model however there are 4s additional eonstraint equations 
whieh will improve this model's degrees of freedom over 
the eonventional model. 



Figure 2 Normal equation structure of the camera 
parameter portion of the constrained bundle adjustment of 
stereo pairs. 

INVARIANCE MODELLED SY MODIFIED COLLINEARITY 
EQUATIONS 

This approach sees the left camera of each stereopair 
being modelled by conventional collinearity equations and 
the right camera is modelled by modified collinearity 
equations written in terms of the left camera coordinate 
system instead of the object coordinate system. Therefore 
the position and orientation of the right camera is 
determined with respect to the left camera. The result is to 
reduce the number of camera parameters from 12s to 
6s + 6 for s stereo pairs. 

The set of modified collinearity equations for the right 
camera are developed below. Subscripts define the object 
(L := left camera, R = right camera, P = object point), 
superscripts define the coordinate system (none = object 
space coordinate system, L = left camera coordinate 
system, R = right camera coordinate system), x = vector 

of plate coordinates, s = point scale factor, R = camera 

rotation matrix and X = vector of coordinates. 

Points on the Left image in object space 
coordinates: 

(6) 

Points on the Lett image in Left camera coordinates: 

(7) 

trom which: 
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Points on the Right image in object space 
coordinates: 

Points on the Right image in Left camera 
coordinates: 

(8) 

(9) 

(10) 

and so plate coordinates of the right hand camera 
expressed in terms of the left hand camera's 
coordinate system: 

Expressed in the more conventional form: 

11 (P-X)+r;2(Q- Y)+r:3(R-Z) 
x, = -c 

r ~1(P-X)+~2(Q- Y)+~(R-Z) 
0.1(P-X)+~(Q- Y)+r~(R-Z~ 

y = -c 
r , ~1(P-X~+~2(Q- Y~+r~(R-Z) 
cr = princlpal distance of right camera; 

r{1 ... r::a = rotation matrix elements of right 
camera in left camera coordinates; 

Xl, yl,Z' = X, Y,&Z coordinates of right camera 
perspective centre in left camera 
coordinates; 

P = r11(Xp-XJ+r12(Yp- YJ+r13(Zp-ZJ; 
Q = r12(Xp-XJ+r22(Yp- YJ+r23(Zp-ZJ; 
R = ra1{Xp-XJ+ra2{Xp-XJ+raa{Zp-ZJ; 

r11 ... r33 = rotation matrix elements of left 
camera in object coordinates; 

Xpo Y poZp = object coordinates of imaged point; 
Xv YL,ZL = object coordinates 01 left camera 

perspective centre. 

The resulting set of observation equations is: 

-
V +Bil =C 

V BL BR ä il L 
- VL - -I 0 0 il R ; 

-
V= VR 

, B = il C= 
0 -I 0 

V 0 0 -I ~ 

V = vector of plate observation residuals; 

V L = vector of left camera exterior 
orIentation observation residuals; 

€ 

CL 

CR 

C 

(11 ) 

(12) 

(13) 



V R = vector of r/ght camera exterior 
orientation observation res/duals: 

V = vector of object coordinate observation 
res/duals; 

Ei L = matrix of left camera exter/or 
orientation panial derivatives; 

Ei R = matrix of right camera exterior 
orientation panial derivatives; 

ä = matrix of point coordinate partial 
derivatives; 

il L = vector of left camera exterior 
orientation parameter corrections; 

il R = vector of right camera exterior 
orientation parameter corrections; 

X = vector of point coordinate corrections; 
€ = discrepancy vector of plate observations; 

CL = discrepancy vector of left camera 
exterior orientation parameters; 

eR = discrepancy vector of right camera 
exterior orlentation parameters; 

6 = discrepancy vector of object coordinates. 

The normal equation matrix structure for this model is 
shown in figure 3. 

Figure 3 Normal equation structure of the camera 
parameter portion of the modified collinearity equation 
bundle adjustment of stereopairs. 

Each left camera of a stereopair is represented by a 6x6 
symmetric sub-matrix generated by the conventional 
collinearity equations. The relationship between tlle left 
and right cameras is represented by one 6x6 symmetric 
sub-matrix and two 6sx6 sub-matrix generated by the 
modified collinearity equations for the rigllt cameras. The 
number of camera parameters is reduced to 6s + 6 
compared to the conventional model however this model's 
degrees of freedom is the same as the conventional model. 

Object space orientation and position of the right cameras 
of each stereopair can be computed from the following 
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reiationships by back substitution after the adjustment is 
completed trom: 

XR = RRllX; 
= R~RLllX: 

:.ÄR = Ä~ÄL 
XR = vector of right camera coordinates; 

Ä R = rotation matrix of right camera in 
object coordinates; 

llX; = vector of objecf/right camera 
coordinate differences in right 
camera coordinates; 

Ä~ = rotation matrix of rlght camera in 
113ft camera coordinates 

XL = ÄLX 
:.X = Ri.1XL 

= R/XL 

XL = vector of 113ft camera coordinates 

X = vector of object coordinates 
Ä L = rotation matrix of 113ft camera in 

object coordinates 

TEST DATA 

(14) 

(15) 

Four stereopairs were taken of a simple object. All points 
on the object were coordinated by theodolite intersection 
to aprecision of ±O.1 mm in each of the three coordinate 
axes. Two stereopairs had horizontal camera bases and 
two vertical. A total of 19 points were observed on all 
images with an ADAM Technology MPS-2 Micro 
Photogrammetric System. 

The photographs were taken by two Canon AE-1 Program 
cameras mounted on a bar with a nominal base of O.200m. 
The object filled the image frame at a distance of 
approximately 1 metre giving a base:height of 1 :5. The 
MPS-2 and both cameras were calibrated by the ADAM 
software prior to the observations being made. 
Approximations of the camera parameters for each 
stereopair were obtained from the ADAM software. Refined 
approximations using all stereopairs were obtained from a 
simple bundle adjustment using unweighted plate 
observations. A self-calibrating bundle adjustment (Fraser 
1982) showed that gross image correction parameters ll.f 
(camera principal distance correction) and K1 (first radial 
lens distortion coefficient) were statistically not significant in 
the plate observations. 

This data was processed by three adjustment models: 

a. a CONVENTIONAL bundle adjustment; 
b. the CONSTRAINED bundle adjustment and; 
c. the MODIFIED collinearity equation model. 

Termination of each adjustment was controlled byeither 
the change in the reference variance or magnitude of 
parameter corrections reaching specified limits. Tables 1 
and 2 give the results of the three adjustments with the 
object points treated as control (Table'1) and as unknown 
(Table 2). The precision of the quoted results reflects the 



magnitude of the parameter correction convergence 
criteria. 

RESULTS 

Basis of comparison are: 
1. model redundancy; 
2. camera axis convergences and base; 
3. reference variance; 
4. plate observation RMS residuals; 
5. object coordinate RMS errors; 
6. object coordinate RMS standard error ellipsoid: 
7. camera position RMS standard error ellipsoid; 

1. The degrees of freedom is increased in the 
CONSTRAINED solution over the other two due to the 
nature of the constraint equations. 

2. The results for the camera base and orientation are the 
same for each treatment by the CONSTRAINED model but 
differs for the other two. At this stage it is not clear 
whether this is due to the action of the constraint equations 
or is merely coincidental. The MODIFIED model has larger 
base and convergence than the CONVENTIONAL model's 
mean values. The CONSTRAINED model has smaller base 
and convergence angles than the CONVENTIONAL model's 
mean values. 

3. The reference variance increases trom the 
CONVENTIONAL to the CONSTRAINED to the MODIFIED 
models indicating progressively less flexible modelling. 
This should be expected as the CONSTRAINED and 
MODIFIED models effectively force the cameras into a fixed 
relationship whereas the CONVENTIONAL model allows the 
cameras to find optimum positions. Any constraining of 
the cameras will result in an increase in the plate residuals 
(see point 4.) and thus the reference variance. 

4. Plate observation RMS residuals of the CONVENTIONAL 
model reduced trom the control to the unknown treatment 
as the points are free to find optimum locations. There was 
an expected increase in the RMS values for the other two 
models, however there was no change between the RMS 
values of the two treatments. An increase over the 
CONVENTIONAL model is to be expected as the cameras 
are not free to find optimum individual positions. 

5. Using the RMS point coordinate residuals as an indicator 
of accuracy the CONSTRAINED and MODIFIED models 
yield better results for both treatments than the 
CONVENTIONAL. Of the two new models presented the 
CONSTRAINED model producing the better results. For 
the CONVENTIONAL model there was an average of 560% 
increase in the RMS values trom the control to the 
unknown treatments compared to only a 270% increase for 
the other two models. 

6. Using the RMS point standard error ellipsoids as an 
indicator of PRECISION the CONSTRAINED and MODIFIED 
models are similar but worse than the CONVENTIONAL 
model for both treatments. The CONSTRAINED model is 
slightly more precise than the MODIFIED model. 

NOTE: these values are generated trom the inverted normal 
equation matrix multiplied by the reference variance. Any 
reduction in the reference variance of each model by better 
weight selection may correspondingly reduce these figures. 
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The weights used for the CONVENTIONAL model were 
kept for the other models. 

7. There is an increase in the camera position RMS 
standard error ellipsoid for each model with the MODIFIED 
model having the highest values. In the MODIFIED model 
the right ellipsoid is relative to the left ellipsoid. 

CONCLUSIONS 

Two bundle adjustment models optimised for use with 
stereo photography have been developed. Initial testing of 
these models indicate that they both yield a greater 
accuracy than a conventional bundle adjustment using the 
accuracy of the object coordinates as that indicator. Using 
the error ellipsoids of the object points as an indicator of 
precision the two models presented do not compare as 
favourably with the conventional model. 

The constrained model has a higher degree of freedom 
than the conventional model due to the addition of the 
constraint equations. It also produces the same stereo 
camera invariant parameters whether the object points are 
treated as control or unknown. 

The modified model requires fewer parameters to be solved 
for than the conventional model giving a savings on 
computational power. 
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TABLE 1 
CONVENTIONAL, CONSTRAINED and MODIFIED BUNDLE ADJUSTMENT RESULTS 

POINTS TREATED AS CONTROL 
CONVENTIONAL and MODIFIED DEGREES of FREEDOM = 361 

CONSTRAINED DEGREES of FREEDOM = 377 

ADJUSTMENT TYPE CONVENTIONAL CONSTRAINED 

BASE (mm) Mean 198.4 197.4 

X AXIS CONVERGENCE (0 , ") Mean 11 0707.4 11 0258.4 

Y AXIS CONVERGENCE (0 , ") Mean 02009.8 01941.7 

Z AXIS CONVERGENCE (0 , ") Mean 11 0648.2 11 0244.3 

s
0

2 1.021 2.317 

RMS PLATE x 0.021 0.039 
RESIDUALS (mm) y 0.021 0.027 

RMS POINT COORDINATE X 0.398 0.262 
RESIDUALS (mm) Y 0.489 0.218 

Z 0.312 0.283 

RMS POINT STANDARD X' 0.223 0.308 
ERROR ELLIPSOID (mm) Y' 0.324 0.483 

Z' 0.216 0.314 

RMS CAMERA STANDARD X' 1.320 1.702 
ERROR ELLIPSOID (mm) Y' 1.083 1.036 

Z' 1.517 1.958 

TABLE 2 

MODIFIED 

204.1 

11 2646.1 

02547.2 

11 2629.2 

2.697 

0.037 
0.034 

0.329 
0.386 
0.297 

0.358 
0.523 
0.352 

L 1.966 R 1.014 
1.396 0.837 
2.180 0.630 

CONVENTIONAL, CONSTRAINED and MODIFIED BUNDLE ADJUSTMENT RESULTS 
POINTS TREATED AS UNKNOWN 

CONVENTIONAL and MODIFIED DEGREES of FREEDOM = 304 
CONSTRAINED DEGREES of FREEDOM = 320 

ADJUSTMENT TYPE CONVENTIONAL CONSTRAINED 

BASE (mm) Mean 201.4 197.4 

X AXIS CONVERGENCE (0 , ") Mean 11 24 15.4 11 02 58.4 

Y AXIS CONVERGENCE (0 , ") Mean 02454.1 o 1937.0 

Z AXIS CONVERGENCE (0 , ") Mean 112351.2 11 0244.3 

s
0

2 0.7000 2.668 

RMS PLATE x 0.017 0.039 
RESIDUALS (mm) y 0.016 0.027 

RMS POINT COORDINATE X 1.278 0.356 
RESIDUALS (mm) Y 3.796 1.234 

Z 0.887 0.339 

RMS POINT STANDARD X' 9.845 17.860 
ERROR ELLIPSOID (mm) Y' 9.645 17.908 

Z' 9.398 17.896 

RMS CAMERA STANDARD X' 10.269 20.026 
ERROR ELLIPSOID (mm) Y' 26.585 17.851 

Z' 10.180 19.865 
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MODIFIED 

205.7 

11 3456.2 

02623.6 

11 3439.6 

2.966 

0.037 
0.032 

0.885 
1.933 
0.469 

22.155 
19.430 
20.184 

L 23.778 R 14.676 
69.700 0.886 
23.453 0.669 


