
SPATIAL ANALYSIS OF TURBULENT FLOW FIELS BY DETERMINISTIC 
AND STOCHASTIC APPROACHES 

B. Crippa, L. Mussio 
Politecnico di Milano 

Dipartimento I.I.A.R. - Sezione di Rilevamento 
Piazza Leonardo da Vinci, 32 

20133 Milano 
ITALY 

H.G. Maas 
Institute of Geodesy and Photogrammetry 
Swiss Federal Institute of Technology 

ETH - Hoenggerberg 
CH -8093 Zurich 

ABSTRACT: 
Objects transparent to wavelenghts to which photogrammetric sensors are 
sensit i ve or opaque objects with fractal dimension near to three are 3D 
(real) examples in photogrammetric practice. The spatial analysis of 3D 
objects involves deterministic and stochasticapproaches. The former concerns 
the finite element method by using spline interpolation, the latter implies an 
optimal filtering of a signal from noise by covariance estimation, covariance 
function modelling and collocation. An application shows the discussed spatial 
analysis methods to velocity fields in turbulent flows determined by 3D 
particle tracking velocimetry. 
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1. THE PROBLEM 

Three - dimensional particle tracking velocimetry 
(3D-PTV) is a weIl known technique for the 
determination of three-dimensional velocity fields 
in flows. It is based on the discrete 
visualization of flows with small, reflecting, 
neutrally buoyand tracer particles and a 
stereoscopic recording of image sequences of the 
particles marking the flow. A powerful 3D PTV has 
been developed at the Swiss Federal Institute of 
Technology in a cooperation of the Institute of 
Geodesy and Photogrammetry with the Inst itute of 
Hydromechanics and Water Resources Management 
(Papantoniou/Dracos, 1989; Papantoniou/Maas, 1990; 
Maas, 1990, 1992). A flow scheme of this 3D-PTV is 
shown in Figure 1.1. 

I marking of ßows .. 
recording and digitization 

of image sequences 

image coordinate determination 
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30 D coordinate determination. .. 
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Figure 1.1 - Flow scheme of a 3D-PTV 

There are two different goals in the application 
of PTV: one is to follow a relatively small number 
of particles over a longer period of time in order 
to do Lagrangian statistics on the particles 
trajectories, the other is the determination of 
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There are two different goals in the application 
of PTV: one is to follow a relatively small number 
of particles over a longer period of time in order 
to do Lagrangian statistics on the particles 
trajectories, the other is the determination of 
instantaneous velocity fields from a large number 
of particles. Due to the highseeding density 
required by this second goal some ambiguity 
problems occur in the identification of particle 
images, in the establishment of stereoscopic 
correspondence (Maas, 1992b) and in tracking 
(Malik et al., 1992). It can be shown that with a 
simple stereoscopic camera arrangement positions 
of at maximum 300-400 particles can be determined 
reliably. Systems for higher spatial resolutions 
have to be based on three or even four cameras 
imaging the flow synchronously in order to be able 
to solve ambiguities in the establishment of 
stereoscopic correspondences (Maas, 1992b). 
Using standard video hardware equipment (CCIR norm 
cameras, images digitized to 512x512 pixels) a 
maximum of 1000 simultaneous velocity vectors at a 
temporal resolution of 25 velocity fields per 
second could be determined in practical 
experiments. The standard deviation of particle 
coordinates in an observation volume of about 
200x160x50 mm

3 
determined by a three-camera system 

was 0.06 mm in X, Y and 0.18 mm in Z (depth 
coordinate). Due to imperfections of the 
calibration, illumination effects and influences 
of t he shape and surface propert i es of part i c I es 
their coordinates in consecutive datasets are 
correlated; i t could be proved that the accuracy 
of the displacement vectors derived from the 
particle coordinates is significantly better than 
the standard deviation of particle coordinates 
(Papantoniou-Maas, 1990). 
The result of a 3D-PTV is a set of velocity 
vectors at random positions in a 3D 
observation volume which has to be interpolated 
onto a regular grid. Figure 1. 2 and Figure 1. 3 
show two examples of measured velocity fields. 



Figure 1.2- PTV - Example 1: velocity field in a 
turbulent channel flow (1 second of 
flow data with about 500 simultaneous 
velocity vectors, 2D-projection) 

Figure 1.3- PTV - Example 2: velocity field gene­
rated in a aquarium (0.5 seconds of 
flow data with about gOO simultaneous 
velocity vectors, 2D-projection) 

Another example of 3D data acquisition is the 
application of 3D laser induced fluorescence 
(3D-LIF) to examinations of mixing processes (Dahm 
et al., 1990). Unlike PTV, LIF is based on 
continuous visualization of flow structures by 
fluorescent material, which emits light of a 
certain wavelength 1 when animated by a laser 
with a different wav~length 1. By scanning an 
observation volume with a läser lightsheet in 
depth and recording images of the illuminated 
slices with high-speed cameras, 3D fluorescence 
concentration data can be acquires quas i­
simultaneously. From these data e.g. concentration 
gradient vector fields and scalar energy 
dissipation fields can be deri ved, which contain 
information about the efficiency of mixing 
processes. 
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2. THE METHOD 

(This paragraph contains an exposition of the 
deterministic and stochastic approaches, with 
special regard to 3D problems; for a view over 2D 
problems and time series and for more information 
see: Sanse/Tcherning, 1993; Ammanati et al., 1993; 
Sanse/Schuh, 1997; de Haan/Mussio, 1999; Barzaghi/ 
Crippa, 1990). 

2.1 Covariance estimation and covariance function 
modelling 

The collocation method requires appropriate models 
to interpolate the empirical autocovariance and 
crosscovariance funct ion of the signal, obtained 
from the residuals of linear interpolations. 
This model function is used (in addition to the 
model found by linear interpolation) to predict 
the value of the studied quantities. 
An hypothesis was made: the residuals can be seen 
as realizations of a continuous, isotropie, and 
normal stochastic process which is stationary of 
2nd order wi t h mean zero and covar i ance funct ion 
of the kind: 

With X(P) the n observations at the different 
points i P , ... ,P '""'P the estimate of the 
empirical aut6covariänce ffinction at the space 
interval r(ll is calculated from: 

(I) 
n 

n i 

o [rC 1)) = ~ I I (1) 
V -(-1-)- V 

i =1 i J =1 j 
n 

i 

where {V~I) : 'r/ P '* r (1-1) < 11 P - P 11 s r(l)} 
j i j 

and v = x X k 1, n 
k k 

and the estimates of empirical crosscovariance 
function at the space interval r(ll are computed 
from: 
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m 
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where {v;I) : 'r/ P '* 
r U - 1 )< 11 P - pli s r Cl )} 

j i j 

{w;d: 'r/ P '* 
r(I-1)< 11 P pli s r(I )} 

j i J 



and v = x - X k = 1, n 
k k 

- k 1, m w = Y
k 

- Y = 
k 

A cri terion for the choice of the radius of the 
sphere including the first autocovariance zone is 
maximizing the first autocovariance est imate as 
folIows: 

( 1 ) o (r (1)) max [+ (I l] 1 r 
(1) 

n 
n i 

where o (r(l)) L v L Cl) 
-(-1)- V n i=l j=l j n 

i 

and 

The "best fit" of the autocovariance function of 
the signal is then chosen among some available 
models, namely: 

E oCr) a exp(-br) 

N oCr) a exp(-br2
) 

EP oCr) a exp(-br) O-cr2
) 

NP oCr) = a exp(-br2
) (1-cr2

) 

ES oCr) a exp(-br) sin(cr)/(cr) 

NS oCr) a exp(-br2
) sin(cr)/(cr) 

EJ oCr) 2a exp(-br) J
1 
(cr)/(cr) 

NJ oCr) 2a exp(-br2
) J (cr)/(cr) 

1 

where the smoothness gi yen by the coefficient b 
for the cases EP and NP is very high. The previous 
abbreviations indicate respectively: 

E exponential function; 

N normal function; 

P parabole function; 

S sine function over x; 

J Bessel function of 1st order over x. 

This list has been built according to the 
definition of covariance function: positive power, 
Le. positive 3D Fourier transform, and Schwarz 
condition for vectorial processes. New covariance 
function can be created from old by applying 

following fundamental theorems: 

- a linear combination with positive coefficients; 
- a product; 
- a convolution. 

The same 1 ist is used to interpolate 
crosscovariance functions: it is not correct in 
principle, but is acceptable in practice, provided 
that crosscovariance estimates are low enough. 
Besides, since 3D isotropic finite covariance 
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funct ions are not known, a 3D finite covariance 
function, isotropic from the numerical point of 
view, can be found using a tricubic spline 
function: 

oCr) - S(x,y,z) sex) S(y) S(Z) 

Finally, the noise variance is found as: 

222 2 (]"=(]"-(]"=(]"-a 
n 

and the noise covariance can be found with a 
similar formula. 

2.2 Filtering, prediction and crossvalidation 

By using an hybrid norm: 

min 

the residuals V
O 

can be split in two parts: the 
signal sand the noise n: 

C C-1 ° 0 

S = v v - n 
ss vv 

° 2 C-1 ° n v s = (]" V 
n vv 

where C C 
2 

I = + (]" 
vv ss n 

and C = [oCr)] is the matrix 
the s~gnal, I is the unitary 
dimension as C 

of autocovariance of 
matrix of the same 

As regard the s~ccuracy, the variance-covariance 
matrix of the error of the estimated signal is 
given by: 

C C C C-1 
C 

2 
I 

4 C-1 - (]" - (]" 

ee ss ss vv ss n n vv 

2 - CAA (]" 
n nn 

i.e. for the main diagonal elements: 

2 
(]" 

e 

2 
(]" 

s 
c

t C C ss vv ss 

where e = s - s 

and 
nn n vv 

while aposteriori an estimate of variance of the 
noise is supplied by: 

The same relationships are employed for the 
prediction of the signal s in points where no 
observations are generally available: 



t C-1 0 t C-1 0 

S C v c Y Y V 
p ss vv ss vv 

p P 

2 2 t C-1 
(j' = (j' - c C 

e s ss vv ss 
p p p p 

where e = s - s 
p p p 

At the check points, if any, discrepances can be 
computed by: 

o 
W - S 

P P 

where o 
W 

P 
are a small set of data use for the 

crossvalidation. 

2.3 Finite element method (e.g. tricubic spline 
interpolation) 

A tricubic spline function is given by the product 
of three orthogonal cubic spline functions: 

S(X,y,z) seX) S(y) S(Z) 

The choice for the number of cells and the number 
of knots depends on the number of observations m 
and the interpolation step o. 
The number of cells is the product of the number 
of classes in three directions x,y and z: 

v = v v v 
x y z 

where v int (ll.X/O) + 1 
x 

v int (ll.Y/O) + 1 
y 

v int (ll.Z/O) + 1 
z 

being ll.X, ll.Y and ll.Z the dimensions of the space 
region in three directions and 0 the chosen 
interpolation step. Consequently the number of 
knots is: 

n = n n n 
x y z 

(v + 3) (v + 3) (v + 3) 
x y z 

The tricubic spline interpolation is performed, as 
a classical least squares problem, by wri t ing a 
system of observation equations: 

S 
k 

o 
S + v = 

k k 

444 

LLL ~ 
i=lj=ll=l 

k 1, m 

I + J + j 

and associating it with the least squares norm: 
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m 

min 

The weights are mostly assumed equal one; however 
more complex stochastic model should be defined 
including correlations between the observations, 
but they are usually omitted in sake of 
brevity. 
The following formulas are the legenda of the 
functional model; indeed for the x direction, the 
coordinate of the k-th knot respect the ini t ial 
corner is splitted in two parts: 

ll.x = I 0 + ox 
k k 

where the number of the preceding knots is: 

I = int (ll.x /0) 
k 

and the position inside the class is: 

~ = ox /0 
k k 

being oXk = ll.xk - 10 

analogously, for the y direction: 

ll.Yk = J 0 + oYk 

where J = int (ll.Yk/o) 

being oYk = ll.Yk - 10 

and for the z direction: 

ll.z L 0 + oz 
k k 

where L 

being oZk 

int (ll.z /0) 
k 

ll.z - 10 
k 

Note that suitable constraints for the knots 
should be introduced at the border and in empty 
regions. 

3. THE SYSTEM OF PRO GRAMS 

(Because of the modularity of the system of 
pro grams , there is a high degree of simi lari ty 
between this system and those dedicated to 2D 
problems and time series; see: Crippa/Mussio, 
1987. ) 

The system consists of a set of programs, which 
allow for the following operations: 



1) data management; 

2) simple least squares interpolation, to remove 
the non-stationary trend; 

3) search for the optimum spacing, for the 
computation of empirical values of the 
covariance functions, when the date are not 
regularly gridded; 

4) empirical estimation of the autocovariance and 
crosscovariance functions of stochastic 
processes with some average invariance property 
with respect to a suitable group of coordinate 
transformations; 

(steps 2, 3 and 4 are repeated until the 
empirical covariance functions look as 
non-stationary covariance); 

5) interpolation of empirical functions by means 
of suitable positive definited models, 
especially with finite covarince function; 

6) finite elements interpolation, by tricubic 
splines, to solve some computational problems, 
if any, and save computing time; 

(steps 3, 4, 5 and 6 are repeated until 
computational problems remain in filtering); 

7) filtering of the noise from the signal and 
computation of the m.s.e. of the estimated 
signal; 

8) analysis of the noise by 
snooping of Baarda type; 

me ans of data 

(by using the residual noise, steps 4 and 5 are 
newly executed; if its empirical covariance 
functions look as coloured residual noise, a 
new step of collocation is started); 

9) prediction of the signal on check points and/or 
on the points of a regular grid; 

10) plot of results by suitable graphics represen­
tation. 

Figure 3.1 shows the flow chart of the system of 
programs. 
When estimating the covariance function of a 
process in three dimensions on a large set of 
data, particular care must be taken of the 
numerical procedure used, to avoid wasting of 
computing time. To this aim special algorithms of 
sorting, merging and clustering have been 
implemented in order to obtain quick 
identification of neighboring points. The same 
care is required for the data management. 
It is at this level that a first blunder rejection 
is done: this is achieved simply by comparing each 
point value with a moving average taken on the 
neighboring points only. This is considered as a 
pure blunder elimination, while the more refined 
analysis described at step 8 is used to recognize 
particular features of the model. 
Indeed, if the data are regularly gridded, the 
analysis of the characteristics of the noise and 
i ts slope and bending allows for the 
discrimination between outl iers and break 1 ines. 
The same is true, wi th minor changes, when the 
data are not regularly gridded but their densi ty 
is generally high. Finally, if the density is low, 
no information on the break lines is available as 
output data. 

384 

When fil tering the noise from the signal of a 
process in three dimensions on large set of data, 
particular care should be taken of the numerical 
procedure to avoid wasting of computing time: to 
this aim the conjugate gradient method (with 
preconditioning and reordering algorithms, if 
necessary) is used. 
As regard the vectorial processes, all the 
components are filtered simultaneously, when the 
crosscorrelations are not too high. Otherwise, 
because of the ill-condit ioned system, the 
components must be fil tered separately, to avoid 
numerical problem. 
After the filtering the residual crosscorrelations 
should be considered in a second step, if 
neccessary. 

4. TRE TEST EXAMPLES 

The system of pro grams runs on the SUN Spark and 
DIGITAL Vax computers. 
Two real examples of turbolence flow fields are 
used to test the new system. 
The study of these examples has been completed for 
small sets of data and it will be repeated in the 
future considering all data together. 
The first example contains 811 observations, which 
are irregularly distributed but dense (average 
distance among neighboring going to equal to 10 
Mm); the second one contains 452 observations with 
the same kind of distribution (average distance 
among neighboring points equal to 5 Mm). 
Their behaviour is very rough. Indeed the 
residuals, after a polynomial interpolation of the 
second order, have approximately the same size and 
shape. This means that the trend removal should 
not be very important in this case. 
However, when, the correlation length is quite 
large, the filtering by least squares collocation 
will give serious computation problems when the 
set of data is large. For this reason a 
pre-fi I tering must be done. The easiest way to 
perform this seems to be the finite elements 
method. The same technique has been indipendently 
applied for a suboptimal filtering from a 
statistical point of view, but with reduced 
computing time and memory requirements. Besides 
the solution is well-conditioned, from a numerical 
point of view. 
Therefore the "old" residuals have been 
interpolated by bicubic spline functions (their 
lags are 50 and 25 Mm in the first example and 50, 
25 and 15 Mm in the second one) and "new" 
residuals have been obtained. This operation 
will furnish a correlation length of reasonable 
size. 
At the moment because the sets of data are small, 
the fil tering by least squares collocat ion has 
been directly performed without computational 
problems. The residual noise of the both examples 
is very flat, and their covariance functions look 
as those of whi te noise processes. Note that a 
filtering by stochastic approach is preferable 
with respect to expanding the finite elements 
model by reducing the lag of the bicubic spline 
functions. Indeed the capabil ity to follow the 
fields behaviour is in the first case higher than 
in the second one. 
Table 4.1 summarizes the results obtained by 
processing the two examples. 
The evaluation of the results has not yet been done 
by the expert of hydromechanics; nevertheless the 
values of the aposteriori variance of the noise 
and the estimation error corfirm the values of the 
standard deviation of the observations for the 
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Figure 3.1- Flow chart of the system of programs 
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first example. The second 
results, since there are 
turbolence is higher. 

example gives worse 
less points and the 

Table 4.1- Spatial analysis of turbolent flow fields (unit: mm) 

1st example (n 811) 2nd example (n 452) 

- apriori standard deviation: 

- 2nd order polynomial interpolation: 

aposteriori sigma naught 

- covariance functions: 

(insignificant crosscovariances) 

apriori variance of the signal 

apriori variance of the noise 

best correlation coefficient 

optimal radius 

correlation length 

"zero point" 

number of blunders (a 

- collocation filtering: 

1%) 

aposteriori variance of the signal 

aposteriori variance of the noise 

estimation error 

number of outliers (a = 5%) 

trimmed variance of the noise 

x 

.315 

.205 

(NS) 

.144 

.120 

58% 

10 

30 

100 

26 

.145 

.114 

.066 

38 

.094 

finite element method by using tricubic splines: 

interpolation step 

number of knots 

aposteriori sigma naught x 

y 

z 

APPENDIX 

50 

44 

. 152 

. 133 

.253 

Least squares collocation with stochastic - and 
non-stochastic parameters 

(This appendix presents a development of basic 
ideas of Barzaghi et al., 1988; and is quoted with 
minor changes from Crippa/de Haan/Mussio, 1989). 

In the above mentioned procedure different systems 
are solved successively. In the integrated geodesy 
approach all systems are sol ved simul taneously. 
Thus after the linearization of the observation 
and pseudo-observation equations, the observables 
and the other data aare collected in a unique 
system containing uncorrelated unknowns x as weIl 
as correlated unknowns that can be interpreted as 
stochastic signal s to fi 1 ter from the random 
noise n: 

Ax + Bs 
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y 

.206 

· 145 

(ES) 

.106 

.084 

54% 

10 

20 

100 

26 

.091 

.076 

.060 

36 

.064 

25 

192 

· 123 

· 109 

.224 

z 

.286 

.259 

(ES) 

. 142 

.174 

28% 

10 

10 

100 

20 

.087 

.183 

.112 

33 

.148 

x 

.218 

.205 

(NS) 

.156 

.104 

68% 

5 

20 

50 

12 

.164 

.094 

.079 

25 

.073 

50 

24 

.177 

.189 

.336 

y 

.348 

.208 

(NS) 

· 148 

· 120 

58% 

5 

15 

50 

15 

· 154 

.115 

.086 

34 

.092 

25 

60 

.153 

.160 

.326 

z 

.348 

.344 

(ES) 

.149 

.246 

24% 

5 

10 

50 

15 

.124 

.266 

. 125 

41 

.185 

15 

132 

.128 

.133 

.316 

Note that i t is necessary to perform preceding 
separate adjustments.Indeed the covariance matrix 
of the signal C is obtained from estimates for 
the unknown par~~eters or residuals; moreover the 
variance of the noise ~2is assumed equal to the 
sigma naught square obt~ined in the last preceding 
separate adjustment. 
The use of both stochastic and non-stochastic 
parameters causes the need to introduce a hybrid 
norm: 

C-1 
0 [~ + 

~ 1 ~t 

't r ss t ~ _ aO) -[s n ] I\. (Ax + Bs - n min 
2 

0 P/~2 
n 

where aOindicates the observations, x, sand n the 
estimated values of x, sand n respectively, P the 
weight matrix of the observations and I\. a vector 
of Lagrange multipliers. 



This can gi ve some trouble in the fixing of the 
weights of the different elements. However by 
repeating the integrated geodesy approach 
adjustment, the uncertainty about the weight 
ratios can be eliminated, and suitable values for 
the weights can be established. 
Moreover all the data are supposed outlier free; 
however because outliers occur in the data, due to 

gross errors and/or unmodelled effects, a suitable 
strategy combining robustness and efficiency has 
to be used. Indeed robust estimators are useful 
for the identification of suspected outliers, 
whi le the least squares are very powerful for 
testing about acceptance or rejection. 
The system of observation equations is now 
rewritten as: 

a Bs 

with s containing both stochastic and 
non-stochastic parameters st=[xtstl and the design 
matrix B defined as B = [A Bl, expressing both the 
chosen functiopal and stochastic modelling.

A 
The 

observations aare related to the estimates s of s 
by the same linearized model: 

Bs - n - aO= 0 (A.1) 

The covariance matrix C for the newly defined 
signal s contains four ß!ocks, two diagonal blocks 
containing the covariance matrices of the 
stochastic and non-stochastic part of the signal, 
and two zero off-diagonal blocks: 

C = 
ss 

The covariance matrix of the stochastic parameters 
is determined by one or more auto and 
crosscovariance functions, which can be estimated 
empirically with the results of preceding separate 
adjustments. The covariance matrix of the non 
stochast ic parameters is a diagonal matrix, the 
elements of which have to be chosen in balance 
wi th the variances of the stochast ic parameters: 
in such a way that the solution is not contrained 
too much to either type of parameters. The general 
variance of the noise ~2, which also has to be 
known apriori, can n be assumed equal to the 
estimated variance factor ~2of the last separate 
preceding adjustment. ° 
The least squares cri terion can now be used to 
minimize contemporaneously the norm ~tC-1~ and the 

norm of the residuals of the observatio~Sequations 
~tp~/~2: 

n 

min 

387 

with P the weight matrix of the observations and A 
a vector of Lagrange multipl iers. According to 
this criterion, the estimates for the signal and 
the noise become (taking into account expression 
1. 1): 

(A.2) 

n (A.3) ° a - Bs 

The computation of expressions (A.2) and (A.3) 
requires the solution of a system wi th dimension 
m, equal to the number of observations. It would 
however be more convenient to have analogous 
expressions, which require the solution of a 
system with dimension n < m, equal to the number 
of parameters. A further requirement would be the 
absence of inverse matrices which contain inverse 
matrices. Both can be achieved by the application 
of the two theorems of linear algebra, which are 
stated below: 

(Q ± RST)-l 

(Q ± QSQ)-l (A.5) 

Precisely, applying first two times theorem (A.4) 
and then theorem (A.5), one obtains: 

(BC Bt + ~2 p-1)-1 
ss n 

P/~2 _ PB (BtpB)-lBtp/~2 + 
n n 

+ PB(Bt pB)-l[C + ~2(BtpB)-1]-1(BtpB)-lBtp 
ss n 

P/~2 _ PB(BtpB)-lBtp/~2 + 
n n 

+ PB(BtpBC BtpB + ~2 BtpB)-lBtp 
ss n 

The estimate for the noise can now be rewritten 
as: 

n 

° a - Bs (A.6) 

Taking into account expression (A.6) the estimate 
for the signal becomes: 

s = 

(A.7) 



Wi th these new express ions, the law of variance 
propagation permits the expression of the 
corresponding covariance matrices in equally 
convenient forms. The covariance matrix of the 
est imated signal and the residual noise become 
respectively: 

CAA C 2 (BtpB)-l+ - er 
ss ss n 

4 (BtpBC BtpB + 2 Bt pB)-l + er er (A.8) 
n ss n 

CAA 2 [P- 1 _ B(BtpB)-lBt ] er + 
nn n 

4 B(BtpBC BtpB 4 Bt pB)-l Bt + er + er (A.9) 
n ss n 

Moreover, taking into account (A.l), the estimated 
value of the observables can be written as: 

o 
a = a n = Bs (A.lO) 

Applying the law of variance 
covariance matrix becomes: 

propagation, its 

CA. 11) 

Finally, indicating with the symbol e the error in 
the estimate of the signal, i. e. the difference 
betw~en its theoretic value and its estimate: e = 
s - s, the covariance matrix C becomes, taking 
into account (A.8), and appiying the law of 
covariance propagation, 

ee ss ss 

(BtpBC BtpB + er2 Bt pB)-l (A.12) 
n n ss n 

Consequently one has: 

C - C (A.13) ss ee 

and: 

(A.14) 

where the last matrix in expression (A.14) is the 
covariance matrix of the estimate for the expected 
value of the observables: 

C ee 
(A.15) 

having indicated with the error of the estimate 
of the expected value of the observables, i.e. the 
difference between its theoretical value and its 
estimate: 

388 

e = a - a = B(s -~) Be 

The least squares criterion, expressed in the 
formulation of the collocation method, can 
provide, besides an estimate for a filtered 
~ign~l, also an estimate for a predicted signal 
s = t: the stochastic parameters can also be 
e~timated in every point. One has to keep in mind 
however, that only the properly called stochastic 
parameters can be estimated. 
Consequently the covariance matrix C only consists 
of the properly called stochastic pa~ämeters, and 
the crosscovariance matrix between the fi I tered 
and the predicted signal C (C = Ct ) is divided 
in two parts: one conräin~~g rfie covariance 
between the predicted signal and the properly 
called stochastic parameters in the filtered 
signal, and one identically zero. This null matrix 
is exactly the reason of the impossibility to 
predict the parameters, which are strictly non 
stochastic. 
Given the functional: 

-1 

C C 0 s ss st 

At At At + 
2 [s t n] C C 0 t ts tt 

0 0 PI n n 

+ A (B~ Ot + ~ - a 0) min 

A being a vector of Lagrange multipliers, and 
taking into account expression (A.?), one has: 

t 

or: 

t C z ts 

with z a service vector: 

which is to be computed once at the end of the 
fi ltering. 
Applying the law of covariance pro pagat ion, the 
covariance matrix of the predicted signal becomes: 



Moreover, indicating with the symbol e the error 
in the estimate of the predicted signal, i.e. the 
difference between its theoretic and its estimated 
value: e = t - t, by applying the law of variance 
propagation, and taking into account expression 
(A.17), the covariance matrix C becomes: 

ee 

C C - CAA = 
ee tt tt (A.18) 

Unfortunately, expressions (A.17) and (A.18) are 
not very convenient in computation, and it is not 
possible to find others more suitable. Therefore 
their computation is usually omitted. 

Some statistic properties of the mentioned 
estimates are now considered. The estimate for the 
fi I tered and predicted signal is consistent and 
unbiased under the hypothesis that the expected 
value of the observables is zero. The estimate of 
the filtered and predicted signal and the estimate 
of its error are efficient, i.e. their variance is 
smaller than the apriori variance of the signal. 
The estimate for the residual noise is efficient, 
i. e. its variance is smaller than the apriori 
variance of the observations. The estimate of the 
filtered and predicted signal has minimal variance 
of all linear estimates. 
The variance of the noise can also be estimated a 
posteriori. Imposing its estimate to be unbiased, 

Tr(PCAA) (A.19) 
nn 

one obtains: 

k 

+ ~2 BtpB)-lBtpl/2] (A.20) 
n 

where m is the number of observations and n the 
number of parameters. Therefore the aposteriori 
estimate of the variance of the noise becomes: 

~2 = (~tp~)/k CA.21) 
n 

This est imate is also consistent under the 
hypothesis that the observations are normally 
distributed. Formula (A.19) can be used for the a 
posteriori estimate of variances and therefore 
also of weights of apriori defined groups of 
observations. 
The aposteriori estimate of the covariance 
function of the signal requires fairly 
sophisticated procedures, which are often 
computationally heavy and do not always produce 
reliable results. 
Wi th respect to the computabi I i ty some 
considerations are made concerning the 
applications of theorems (A.4) and (A.5). As was 
already said before, a sui table appl ication of 
these theorems provides systems of dimension n <m, 
without inverse matrices which contain other 
inverse matrices. The expressions (A.7) and (A.12) 
contain the expressions: 
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(A.22) 

The solution of this system and the computation of 
the inverse matrix are standard procedures in any 
least squares problem and, are computable wi th 
direct solution algori thms, which are capable to 
work with sparse matrices. Expressions (A.7) and 
(1.12) also contain the expressions: 

(A.23) 

The normal matrix BtpB was alread~ obtained 
before. The covariance matrix: C = C * S ,of 
the properly called stochastic sparam~~ers s~s a 
sparse matrix when constructed by multiplying, 
accordin& to Hadamard, the proper covariance 
matrix C by a suitable finite covariance matrix 
S . Itss~parseness depends on the "pers istence of 
d5~relation" of the finite covariance functions. 
Its dispersion however is influenced by the 
(re)numbering of the points. The product of three 
sparse matrices (BtpB)Ct (B PB) is a sparse matrix 
itself. The solution ofs~he corresponding system 
therefore can be computed with iterative solution 
algorithms for sparse matrices. 
Finally starting from the use of the Hadamard 
product to obtain a sparse covariance matrix, an 
acceptable approximation of its inverse matrix can 
be obtained by multiplying, according to Hadamard, 
once more the inverse of the covariance matrix 
(Co * S )-1 by the previous defined finite cova­
ri~ßce S~atrix S . In such a way the matrix 
(Co * S ) * S-liss~parse too and the expressions: 

ss ss ss 

(~2 (Co * S )-1 * S + Bt pB)-l Btp (X0 

n ss ss ss 

(A.24) 

could be preferred to the expressions (A.23) in 
term of a greater sparseness of the matrices and a 
better numerical conditioning of the systems. This 
new approach, which could be called "approximated 
integrated geodesy", has not been tested very well 
yet, but should be applied in the next future. 
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