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Abstract 

In this paper a new method for image segmentation is discussed. It is based on the theories of parameter 
estimation and hypothesis test of mathematical statistics. The mathematical formulas and criteria of the 
method are introduced and derived. The function model and random model of the image are discussed. A 
quantitative index about the separability of the regions are also provided. Some examples are presented to 
show the effects of the proposed method. 
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1. INTRODUCTION 

The problems of image segment at ion is key important in 
machine vision. It is also essential for many applications 
of robot vision in elose range photogrammetry. Since the 
pioneer work of Roberts, Brice and Fennenma[l] much has 
been written about the topic and many methods have been 
described in the Literature[2],[1]. The subject continues to 
receive a great amount of interest because of its essential roIe 
in machine vision. It is the basis of many tasks in vision area, 
e.g. image modelling, image interpretation, scene analysis, 
image understanding etc. 

Mainly speaking, image segmentation indicates to divide an 
image into several regions according to some consistent prin­
ciples. It can also be regarded as the elassification of the 
image pixels. The mathematical definition of the image seg­
mentation can be addressed as the following: 

For an image R, if m sets of pixels Rl, R2, ••• , Rm exist and: 

m 

• U Ri = R; 
i=l 

4» each Ri satisfies some consistent principles; 

'" any combination of the connected sets does not satisfy 
the above consistent principles; 

then the (Rb R2 , ••• , Rm ) is called a segmentation of the ima­
ge R. 

There are mainly two types of the consistent principles. 
The first one supposes there is a homogeneity inside a re­
gion, e.g. the same grayvalues. The second one supposes 
there is a discontinuity between the regions, e.g. the sud­
den change of the grayvalues. The proposed approaches 
of image segmetation can be categorized into three kinds, 
namely threshold-based methods, region-based methods and 
feature-based methods. The threshold-based methods use 
one or several grayvalues as the thresholds to divide the im· 
age. But in the most cases it is difficult to find the suitable 
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thresholds. The feature-based methods inelude the edge 
based methods, which take the edges as the boundaries of 
the regions, and the elassification based methods, which use 
feature based elassifier to determine to which region does a 
pixel belong. The region based methods involve region grow­
ing methods, region splitting and region merging methods, 
and function approximation methods. Each of the above­
mentioned methods has its advantages and disadvantages. 
None of them is perfect and suitable for every case. 

In this paper a new method is discussed. It is based on 
parameter estimation and hypothesis test of mathematical 
statistics. So that it is theoretically perfect and mathemat­
ically wen represented. With this method the image noise 
can be optimally treated. Furthermore the method can also 
quantitatively describe the separability of the regions. The 
experiments show that it has also great prospects in appli­
cations. Because the images in elose range photogrammetry 
for the applications of machine vision have usually distinct 
objects and backgrounds, the method should be very suit­
able in these occassions to distinguish objects from the back­
grounds. In the following the methodology is discussed and 
the mathematical formulas are derived. Its procedures in the 
applications are analysed and some examples are presented. 

2. THEORY OF PARAMETER ESTIMATION 

The tasks of parameter estimation are to determine the un­
known parameters from the observations. There are several 
estimation methods for the different models and cases, e.g. 
point estimation, unbiased estimation, least square method, 
maximum likelihood method. We introduce he re only the 
least square method for the linear model. If the observations 
have a normal distribution, the results of the least square 
method are equal to that of the best linear unbiased estima­
tion and the maximum likelhood method[3]. 

2.1 Least Square Estimation 

If the observations are the linear functions of the unknown 
parameters, we call it linear model. For the case of the 
unlinear model we can use the series expasion according to 
Taylor to obtain the linearized model. So we can discuss the 
least square method under the linear model without loss of 



generalization. Suppose we have the function model of pa­
rameter estimation as the following: 

Anxt X txl = E(L)nxl (1) 

where L is the observations, E(L) is the expectation of L, 
X is the unknown parameters, n should be greater than t, 
A is the coefficients matrix and has fuH rank, and 

[ 

11 I [ Xl I [an a12 ... alt 1 
L = I; ,x = 7 ' A = ~~~ .. ~~~ . ........ ~.2.t 

In Xt anl an2 ... ant 
(2) 

In the equation (1) A and L are already known, but X and 
E(L) are unknown. 

The differences between observations Land expectations 
E(L) are called true errors c, the negative c is called cor­
rections V: 

c = L - E(L), V= -c (3) 

From the equation (1) we can have 

V = AX - L (4) 

Suppose the observations L have a normal distribution, the 
variance of L is I:, the correspondent weight is P. Then the 
probability density function of L is 

f(h, 12,"', Zn) = 

n
1 

1 exp{ - ~[L - E(L)fI:-1[L - E(L)lX5) 
(21T}2 1 I: 12" 2 

and 
(6) 

where (J" is called unit weight variance. 

The least square method estimates the unknown parameters 
X under the conditions: 

V T PV = minimum 

The estimates of X then are 

The estimates of (J" and the variance of X are 

0- = JVTPV 
n - t 

(7) 

(8) 

(9) 

(10) 

The estimates X are the best linear unbiased estimates and 
the I: x x is minimal if the observations have a normal dis­
tribution. 

2.2 Hypothesis Test 

By means of hypothesis test we can determine if there are 
any model errors in the function model (1). Suppose the 
primary hypothesis is 

Ho: E(L/Ho) = AX (11) 

the alternative hypothesis is 

Ha: E(L/Ha) = AX + HS (12) 
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In the equation (11) and (12) Anxt and Hnxk are the known 
coefficients matrixes, X txl are the unknown parameters, 
SkXl are the unknown model error parammeters, Lnx1 are 
the observations, and 

L "-+ N(E(L), I:) (13) 

We can rewrite the equation (12) as 

L + V = AX + HS with weight P = (J"2I:-1 (14) 

Suppose n > t + k, and [AH] has full rank, then we can 
obtain the estimates S from the equation (14) with the least 
square method[4]: 

where 

S = pslHT PQvvPL 

Qvv = p-1 - A(AT P A)-l AT 

Pss = HT PQvv PH 

(15) 

(16) 

(17) 

If (J"2 is known, then the following statistic variable Tl has 
the uncentralized 
X2-distribution with k degrees of freedom and uncentralized 
parameter 8: 

where 
B = PQvvPHPslHT PQvvP 

82 = ~(ST PssS) (J"2 

(18) 

(19) 

(20) 

If the unit weight variance (J" is unknown, we can use the 
following statistic variable T2: 

If the primary hypothesis is right, the uncentralized param­
eter 8 is zero, so we can use the statistic variable Tl or T2 

under a certain risk level Q' to determine if there are any 
model errors. 

3. IMAGE SEGMENTATION 

3.1 Image Error Analysis 

An digital image R is usuaHy described by a two dimen­
tional array G. Each element g(i,j) of the array G repre­
sents the grayvalue of the image at the position i-line and 
j -column. An image pixel can be therefore defined by its 
position and its grayvalue: 

Pij = (i,j,g(i,j)) (22) 

The grayvalue g(i,j) is composed of two parts, namely the 
true grayvalue g(i,j) and the true error c(i,j), which both 
are unknown: 

g(i,j) = g(i,j) + c(i,j) (23) 

The error c(i,j) of the pixel p(i,j) is caused by the instru­
ment and the enviroments of the image acquisition. There 
are a variety of influence aspects to the error c(i,j), e.g. 
if a ccn camera is used to acquire a digital image, then 
the error sources can be among others the lens distortion, 



the syncronization accuracy, the signal transfer, A/D con­
version, the quality of the sensors, the temperature, the 
humidity and so on[5]. Since each part of the error is quite 
small and independent, we can suppose it to have a nor­
mal distribution according to the central limit theorem of 
mathematical statistics, that is 

(24) 

U sually fl should be zero. If fl is not equal to zero, we can 
take a simple translational transformation to make fl equal 
to zero. So the error c:(i,j) can be supposed : 

(i,j)ER (25) 

The equation (25) is also called the random model of the 
image. 

3.2 The Function Model 

An image region Rk is defined he re as a set of the con­
nected pixels Pij, which true grayvalues g( i, j) satisfy a cer­
tain function: 

fk((i,j,g(i,j)) = 0 (26) 

If we really know the light intensity function of an object, we 
should use this function as the segmentation function. We 
must linearize the function at first if it has a unlinearized 
form. Otherwise let us use the first consistent principle for 
the segment at ion , namely suppose there is a homogeneity 
inside a region. That means the grayvalues in the same 
region are homogeneous. So we can suppose the grayvalues 
in a region satisfy a planar equation: 

g(i,j) = aki + bkj + Ck 
or more simply a horizontal plane: 

g(i,j) = Xk 

(27) 

(28) 

Refer to the equation (4), we can set the linear estimation 
equation as: 

v(i,j) = aki + bki + Ck - 9(i,j) (i,j) E Rk (29) 

for the whole region we have 

V=AX-L with weight P = I (unit matrix) (30) 

where X = (ak' bk, Ckl. 
According the principle of the least square method, we can 
obtain the optimal estimates of X 

(31 ) 

and the variance 

(32) 

3.3 Criterion of Segmentation 

We know that n pixels (PI, P2, ... ,Pn) belong to the same 
region. From the equation (31) and (32) we can get the 
region parameters X and the variance &. Now the question 
is how to determine whether the pixel Pn+1 belongs to the 
region. If the pixel Pn+l belongs to the region, it satisfies 
the equation (29). Otherwise there is a model error, or we 
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can say the grayvalue 9n+1 has a different expectation than 
the grayvalues (91,92,'" ,9n). We can represent it as 

So we can determine the pixel Pn+1 by a hypothesis test: 

Ho: E(Sk/ Ho) = 0 

E(Sk/ Ha) = Sk 

(34) 

(35) 

In the equation (18), let H = (0,0,· .. ,0, 1)T, P = I, we 
have the statistic variable 

(36) 

where Vn+1 is the correction to 9n+1 under the primary hy­
pothesis and can be obtained from 

V=AX-L (37) 

with V = (VI, V2,' .. ,Vn, vn+dT
, L = (91, 92,' .. ,9n, 9n+dT

. 

qVn+l Vn+l is the element of the matrix Qvv in the n + 1 line 
and n + 1 column, which is computed from 

(38) 

where A is same as in the equation (37). 

The equation (36) can be simplified as the standardized 
normal distribution under the primary hypothesis: 

(39) 

In applications we can use a computed from the first n 
pixels as the (7 in the equation (39), we can also use the 
statistic variable T2 from the equation (21): 

(40) 

where 
2 

a = (VTV - vn+1 
) / (n - t - 1) 

qVn+lVn+l 

( 41) 

The others are the same as in the equation (39). 

3.4 Separability of Regions 

In order to determine which hypothesis is correct, a risk 
level a must be given. This risk level a is the prob ability of 
incorrect rejection of the primary hypothesis. For a given 
a, we can find a correspondent critical value I<a from the 
table of the probability density function. If the value of 
statistic variable (39) or (40) is greater than this J{a, the 
primary hypothesis is rejected and the alternative hypothe­
sis is accepted. The probability of correct acceptance of the 
alternative hypothesis is called the power of test ß, There 
is another risk in hypothesis test, namely the prob ability of 
incorrect acceptance of the primary hypothesis. It is equal 
to 1 - ß. The power 0/ test ß is not only dependent on a 
(the smaller a the smaller ß), but also on the magnitude of 
the model error Sk. 

Now we have to answer the question, how great a model 
error should be, in order that it can be found by the hy­
pothesis test under the given risk error a and powe1' 0/ test 



ß? It is the problem of separability of regions. If the pixel 
Pn+l does not belong to the region Rk but to the region 
Rk+I, only if the alternative hypothesis (35) is accepted, 
the region Rk+I can be separated from the region R k. For 
a given a and ß, we can obtain a minimal uncenterized 
parameter 80 , 

80 = 8(a, ß) ( 42) 

For the standardized normal distribution 80 is 

( 43) 

For example, if a = 0.1 %, ß = 80%, then 80 = 4.13. If the 
value of the statistic variable Wi is greater or equal to the 
80 , then the model error can be found with the given a and 
ß. SO the minimal model error should be 

s? = Iv?1 = w? = a~ 
ylqvivi 

(44) 

That means, if and only if the difference of the grayvalues 
between the region Rk and Rk+1 should be equal or greater 
than s?, the two regions can be separated from each other 
with the given risk error Cl: and power of test ß. 

If the number of the observations n is great enough, the 
ylqvivi ~ 1, so in this case the equation (44) can be approx­
imated as: 

(45) 

4. IMPLEMETATION OF SEGMENTATION 

4.1 Choice of Start Area 

For the different function models of a region we must choose 
astart area with certain number of pixels, e.g. for the 
planar function (27) the start area should have three pixels. 
We use the procedure of minimal difference in grayvalues 
(MDG) to set up the start area: 

• to find an unclassified pixel as the first one; 

• to choose the pixel with MDG to the first pixel among 
all the neighbouring pixels; 

• the next pixel should have MDG to the average gray­
value of the choosen pixels. 

The neighbouring pixel can stay in the 4 directions 01' 8 
directions. We should pay attention to the case when all 
the pixels in the start area are in the same line. In this 
case the solution of the equation (31) are indefinite. As an 
alternative we can then use the function model (28). 

How to choose the first pixel is also quite important. It 
may have bett er results if the first pixel does not stay on 
the boundary of two regions. 

4.2 Labelling of Regions 

In order to keep the implementation as quick as possible, 
the labelling of the pixels should be optimized. The unde­
tected pixels, the rejected pixels and the accepted pixels can 
be separatly labelIed in order to avoid repeatedly searching. 
By searching for the acceptable pixels the rules about pri­
ority of the nearest neighbouring pixel (lengthwise priority) 
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and the shortest distance to the start pixel (crosswise pri­
ority) can be used. After a region has been segmented, all 
the pixels in the region will be also identified and specially 
labelled. 

After all the regions have been segmented, the boundaries 
of them can be also easily obtained. 

4.3 Handling the Small Areas 

If two regions have a great difference in grayvalues, then 
the grayvalues between two sides of the boundary do not 
change suddenly, but gradually. So sometimes there may 
be a small region along the boundary found. These kinds 
of small regions are usually very narrow and superfluous. 
According to their properties we can merge them. Here we 
can also use the previous knowledge if there is any. 

4.4 Some Examples 

In order to examine the effectiveness of the method we have 
carried out several experiments. The results of them are 
illustrated in the following figures. 

Figure 1: the first image wi th a = 5 

Figure 2: the segmented results of Fig. 1 

Figure 1 is a simulated image with 5 regions. The range 
of the grayvalues of the image is from 0 to 255. The differ­
ence of the average grayvalues of two neighbouring regions is 
about 50. A Gaussian noise with the expectation E( c) = 0 



Figure 3: the regions boundaries of Fig. 

and the variance 0' = 5 is added to each pixel of the im­
age, and the maximal difference of the noise is 40. With the 
risk error 0: = 0.1 % both function models (27) and (28) are 
tested. The segmented results of the planar function model 
(27) are shown in the Figure 2. From the figure 2 we can 
see that the lower-right part of the large circle is segmented 
as an independent region, because this part is isolated from 
the two other parts by the triangle. The segmentation here 
is entirely correct. The boundaries of the segmented regions 
are shown in the figure 3. The results of the horizontal plane 
function model is same, except that there is a very small un­
necessary region on the boundary between the triangle and 
the small circle, which is caused by the large noise and can 
be easily eliminated. 

Figure 4: the second image with 0' = 8 

Figure 4 is also a simulated image with normally distributed 
errors. It has 8 regions and the difference of the avarage 
grayvalues of two neighbouring regions is about 32. The 
variance of the Gaussian noise is 0' = 8, and the maximal 
difference of the noise is about 65(±40'). That means the 
grayvalues between two neighbouring regions have already 
overlapped. We have also tested two function models for 
the image. By risk error 0: = 0.1% both models can only 
segment the image into three regions, because the regions 
can not separated in this case. By 0: = 1 % both the models 
can divide the image correctly except that there is a small 
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Figure 5: the segmented results of Fig. 4 

-----------------------------------, 

Figure 6: the regions boundaries of Fig. 4 

unnecessary region as in the first image. From the equations 
( 43) and (44) we know that by larger 0: the separabili ty of 
the regions increases too. The segmented results and the 
boundaries are shown respectively in the figure 5 and 6. 

Fig. 7 the 3. image with (1 = 20 Fig. 8 the coarse segmentation 

Fig. 9 results after region-merging Fig. 10 regions boundaries of Fig. 7 



Figure 7 is a test image from the OEEPE-test on the feature­
based segmentation. The image is 64 x 64 pixels large and 
has the Gaussian noise with the variance ()" = 20. The seg­
mented results for both models are nearly the same, but by 
a = 0.1% the part inside the letter D is treated as three 
small regions for the horizontal plane function model and 
the planar function model segments this part into the same 
region as the letter D itself. Figure 8 shows the segmented 
results of the horizontal function model, figure 9 is the re­
sults after the region-merging from figure 8, and figure 10 
the boundaries graph. 

Fig.ll the 4. image from CCD camera Fig. 12 the coarse segmentation 

Fig. 13 results after region-merging Fig. 14 regions boundaries of Fig. 11 

Figure 11 is a real image taken by a CCD camera. The image 
has 128 x 128 pixels and the range of the grayvalues is from 0 
to 255. We can see from the segmented results figure 12 that 
there are a few small regions at the boundaries. After the 
elimination of the small regions we have the results shown 
in the figure 13. Figure 14 shows again the boundaries of 
the regions. 

5. CONCLUSIONS 

From the above discussions and examples we can see the 
method of image segmentation based on parameter estima­
tion has not only a perfect theoretical and mathematical 
basis, but also great prospects in applications. With this 
method we can treat the image noise quite perfectly. We 
can also quantitatively judge the separability of the regions. 
The results of the simple horizontal plane function model 
are not worse than the planar function model, but the for­
mer works much faster. Usually there will be more regions 
segmented with the larger risk errar a. 

A further work is how better to solve the problem of the 
prevention and mergence of the superfluous small regions at 
the boundaries. It may be better solved together with the 
edge-based method or by using an iterative approach. More 
experiments should be carried out on the real images in order 
to examine the effects of the method and to evaluate which 
function model and which risk error a are more suitable. 
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