
VERIFICATION OF GRAPHICAL PRIMITIVES IN GRADIENT DIRECTION IMAGES

VIf Hönisch, Universität Bremen, Informatik

Postfach 330440, D-2800 Bremen 33

Abstract: Object recognition seems to be a more model driven task than realized in today's computer systems. So
model driven verifieation of weIl known objects in special supposed positions becomes an important task. Those
known objects may be represented as CAD-models whieh have been suggested and investigated for object recognition
purposes in the past [Bhanu, 1987] [Ikeuchi, 1987] [Gmür, 1988] [Coy, 1989] [Henderson, 1990].We describe a new
approach for the recognition of objects represented by CAD-models by verifying their graphieal primitives in the
direction image. The approach is based on some weIl known computer graphies algorithms. We use the primitive type
as weH as position and orientation parameters all calculated from given transformation parameters. The operations are
organized to work in a strong model driven interpretation process. The gradient direction image we are working at is
much doser to the geometrie CAD-models than a captured greyscale image and is dose enough to the captured data to
prevent the influence of numerous thresholds. The described operations work on 2D primitives in 2D images,
nevertheless they may be used in 3D context after a suitable projection.

Key Words: Image Analysis, Model Based Analysis, Graphieal Primitives, Verifieation, CAD Models, Proving
Operations

1. INTRODUCTION

We suppose that human object recognition is a process
whieh use expectation and apriori knowledge in a
more rigid way than implemented in existing vision
systems. Expectations based on a special context allow
us to handle most situations rapidly when they fit
reality. But even when an expectation is wrong the
context gives enough information to correct it and to
continue the process. On the opposite side, recognition
of a simple shape in an abstract, isolated test situation
may be very crucial. Therefore we may think of
recognition as a simulation of this context. Hypotheses
of the expected objects arise from their simulations and
have to be verified after a projection into the image
frame. Understanding recognition as a search problem
in the space given by aIl possible objects and their
different positions and orientations the simulation
should reduce the space dramatically.

Translating this idea into a technieal system leads to a
model based approach consisting of two steps. First
model and Iocation hypotheses are generated, the
second step looks for a successful verification of their
projection in the image. While this paper concentrates
on the verification task, we ass urne that there is a given
set of hypotheses. The extraction of corresponding
interest points and the calculation of transformation
hypotheses is described in [Hönisch, 1986] [Hutten
locher, 1987] [Lamdan, 1988].

2. GRAPHICAL PRIMITIVES

For computer aided generation, pietures are handled as
complex graphical structures. A structure which can not
be subdivided further is called a primitive. Graphies

646

interfaces like GKS, PHIGS and QuiekDraw provide
operations defined on those graphieal substructures.
They allow the definition of drawings based on a given
primitive set. The representation consists of primitives
and their topology. In general, subdivision is not
unique because the representation scheme is not unique
[Requicha, 1982]. Therefore an object may be
represented by different subdivisions leading to
different primitive sets.
Machine vision usually starts with the captured picture.
Syntactie pattern recognition is based on the structures
described above [Fu, 1974]. But the transformation
necessary to map a pixel set into a set or structure of
primitives is not unique too. So, matching the generated
data bottom up against an existing representation can
never be precise. If there is a limited number of model
and location hypotheses there is an alternative
approach by using modelbased proving operations
[Coy, 1989]. Proving may be done at different levels
somewhere between the captured image and the model
[Shirai, 1983]. At the lowest level it is possible to look
for the sociability of model instance and picture
contents. The latter is not affected by filter or
segmentation operations. We are searching for those
proving operations suitable for graphical primitives.

Proving operations based on those primitives defined in
below should allow a specific verification using
primitive features. They should work on data not
affected by preprocessing algorithms. Beside the result
of the verification, the operation should provide the real
parameters of the indicated primitive. The operation
allow the verification of complex structures like those
given by CAD-models and the approximation of a
synthetical scene description to a given greyscale image.

P2 a
(x2, y2, z2)

M

P1

Picture 1: Une, circle and arc primitives and their
parameters used in AutoCADs DXF-format. LINE(xl,
yl, zl, x2, y2, z2), start point PI = (xl, yl, zl), end point
P2 = (x2, y2, z2), CIRCLE(x, y, z, r), centre M = (x, y, z),
radius rand ARC(x, y, z, r, a, b), centre M = (x, y, z),
radius r, start angle a, end angle b.

3. PRIMITIVES AND SCENE ANALYSIS

The verification task requires an existing hypothesis
giving us name, position and orientation of a model in
the picture. Therefore the location of each hypothetical
primitive in an image frame is wen known and should
be verified iconically within the image frame. Template
matching as a weIl known technique to compare two
dimensional models and image structures on pixel level
becomes only efficient if the number of possible
templates is very small. But the primitives we are
looking for appear in a wide variety of instances
produced by translation, rotation and scaling.

Edge following techniques weIl known for binary and
greyscale images produce any contour description
based on a given image. In general, those algorithms do
not use information about the contour shape. Starting at
a special point the algorithm climbs along the contour
based on the black to white change or the gradient
direction. This is an uncontrolled approach because any
shape may be followed in any orientation independent
of apriori knowledge about contour details. Further
more, the advantage of contour based approaches not to
visit all existing image points may be damaged by an
exhaustive search for appropriate start points. A model
based start point generation may prevent this.

The use of other techniques allows a direct access to
shape information. The Hough-Transformation has
been developed to detect curves given analytically
[Hough, 1962]. Its application to straight line and arc
detection is described in [Ballard, 1982]. Those curves
we are looking for determine the parameters defining
the transformation space which is searched for a special
curve instance based on type information. We are
interested in algorithms using both type and location
information.

To derive a complete segmentation of polygons Vieweg
and Carlsohn [Vieweg, 1990] suggest a method for
modelbased contour following. A model independent
preprocessing reduces the intensity image to a binary
one consisting only of straight line elements. Starting at
a given point a hypo thesis is generated to estimate the
location of the next object corner. It must lay straight
along the given line. At this hypothesized Une
consisting of n pixel n hypotheses based on two

647

intersecting lines are extracted from the model.
Hypotheses are verified by comparing the results of the
convolution operation with the Sobel Operator and the
data in the gradient image. The approach performs a
controlled search, reducing the nu mb er of visited
points. Unfortunately, the approach demands edge
images with lines limited to one pixel width.

The projection between a symbolic object description
and araster oriented representation is also discussed in
computer graphics. A widely used algorithm for
straight line generation in a rasteroriented frame is
given by Bresenham [Bresenham, 1965]. We consider
straight line verification as areverse Bresenham
generation. Algorithm 1 shows the verification of
contour points at iteratively calculated image locations.
Starting at point PI the line is verified if the end point
P2 is reached. This simple approach can only prove
artificial straight lines in binary images. Start and end
points have to be defined exactly. The line has to be
generated by the same algorithm or must exactly match
its result. Both conditions can not be accepted for image
analysis where a searched region defining a straight line
may vary in position, location and width from those
ideals. So similar lines have to be accepted by
verification.

WHILE (value = FOREGROUND)
BEGIN

x:= x + 1;

y:= a· x + b;
y := round(y);
value := getpixel(x, y);

END

Algorithm 1: The schema of straight line verification
follows the idea of Bresenham's line drawing algorithm.

The slope a = dy / dx given by the model determines the
next pixel examined by Algorithm 1. We can reduce this
iterative calculation to a neighborhood search by
transforming the intensity image so that the slope of
each pixel is explicitly given. Since the slope of a
straight line is orthogonal to the direction <p of the
gradient we have to remember its features.

5. GRADIENT IMAGE

The proving operations in this paper are based on the
gradient of the intensity image. This vector is given for
all pixellocations (x, y) by its amount g and its direction
<p:

g=~ dx
2
+dy2

qF=arc~
where

(Eq 1)

(Eq.2)

(Eq 3)

<p points to the direction with the strongest variation of
the amount; g gives the quantity of this variation while
stepping from (xi, Yi) in this direction. Both values g =
f(x, y) and <p = f(x,y) may be represented iconically in
the gradient and the direction image which state local
intensity variations. We consider only those points
belonging to a contour wh ich is indicated by a great
amount of gradient.

Picture 2: Greyscale coded direction segment
representing the tangents which approximate the cirde.

For further discussion, we subdivide the set of all
gradient directions in 16 segments, each covering 22.5
degrees. Each sector is depicted by a greyscale value
from the set G = {O, 16,32, ... / 240}. An image region
with constant gradient direction looks homogeneous
whereas those containing differences show significant
variations. Therefore the front panel in picture 3 shows
homogeneous straight lines and structured arcs. Lines
of the same orientation may vary in the coded direction.
This is caused by different material sides wh ich turn the
sign of the slope.Details shown in picture 3 state that a
straight Une is represented by a set of neighboring
pixels covering only two neighboring directions. A
circle consists of pixels representing all possible
directions, neighboring pixels belong to neighboring
direction segments.

Picture 3: A front panel contour, depicted by the
greyscale coded direction.

The size of the gradient mask (1 x 2 and 2 x 1 pixel)
guarantees a minimal contour width of two pixels
within a binary image with a maximal intensity slope.

648

Using intensity images the resulting width depends on
the underlaying slope and on the threshold. Typically it
is 2 to 6 pixel while using a threshold of 30 for the test
images.

6. STRAIGHT LINE VERIFICATION IN DIRECTION
IMAGE

Because the slope is explicit represented in a direction
image it is possible to decide locally whether or not a
special pixel belongs to a given line with a weIl known
slope. The compatibility of the attachment with the lines
extension is ca1culated by a recursive line point
verification. A suggested line caIled ModelLine given
by the start and end point is verified by the following
algorithm:

FUNCTION verify _line (ModelLine, PictureLine)
BEGIN

search for start point
calculate the orientation of ModelLine
verify _linepoint (Point,Orientation)
approximate PictureLine
compare ModelLine with PictureLine

END

PROCEDURE verify_linepoint (Point,Orientation)
BEGIN

END

IF pixel orientation = Orientation THEN
BEGIN

Point.x := Point.x + 1
verify _linepoint (Point, Orientation)
Point.x := Point x - 2
verify _linepoint (Point, Orientation)
Point.x := Point.x + 1
Point.y := Point.y + 1
verify _linepoint (Point, Orientation)
Point.y := Point.y - 2
verify _linepoint (Point, Orientation)

END

Algorithm 2: Straight line verification and recursive
verification of line points in the 4 connected
neighborhood.

For low contrast images the four-connectedness is
susceptible. We got better results using the eight
connectedness. Similar approaches are weIl known for
segmentation purposes. Our routine is called from a
high processing level. supplied with model details. Hs
recursive search go es on until this detail conditions are
violated. No thresholds are used except for those
defined in the verification routine. Here the necessary
inexactness is given by the search area for a start point,
the tolerance area for line end points and the allowed
orientation angle.

The straight line verification described above has been
tested on pictures of several aluminum plates. All tests
are carried out with a search area of + / - 4 pixel and a
tolerance value of 10 pixel. The transformation
parameters may be seen as ideal conditions because
they have been generated interactively.

-0--0

o
\ 0

Picture 4: Verified straight lines of some front panels.

All straight lines above a minimallength of 10 pixels
have been verified successfully. Actually, the algorithm
does not distinguish between edges with the same
direction and different orientation. So the opposite
boundaries of a very small hole are indistinguishable
without further model information. This happens at the
little screw wholes with an extension up to 6 pixel. The
verification of larger primitives is invariant under
rotation and translation.

1r:::=:=J]

Picture 5: Verified straight lines of a rotated object.

7. VERIFICATION OF CIRCLES AND LINES

Straight line verification is organized as contour
following of pixels with constant direction. Cireles and
arcs have no such simple direction features. Their
generation algorithms may be elassified as raster
oriented approaches for creating the "true" line and
those interpolating the shape by polygons, Bezier
curves, B-Splines etc. Disadvantages of both approaches
are wen known in computer graphics. The raster
oriented approach needs new primitives which usually
demand different data structures and algorithms e.g.
extended elipping, transformation and projection
algorithms. These operations may map a primitive type
to a new one and the drele and arc generation
algorithms can not prevent the necessity for higher
ordered curvc interpolation. The interpolation approach
just looks for a curve approximation. Obviously, this
approach is more efficient than the raster-oriented on. It
is a useful alternative if its precision is acceptable and is
applied here.

PI P2

Picture 6: Cirele approximation by direction segments.

649

The segments created in the direction image are already
an approximation of the curve (picture 6). Although the
curve is given by a set of discrete pixels located on the
curve to be approximated the pixel values classify them
as straight Une points. In this way drcle verification is
reduced to the verification of a set containing straight
lines. The verification is always done elockwise. When
reaching a new line, the direction code is incremented.

FUNCTION verify _drele (ModeICircle, PictureCircle)
BEGIN

initialize i
calculate start point Pi
increment i
DO

calculate the next point Pi
verify _line Oine(Pi-1, Pi) ,PictureLine)
increment i

WHILE(i < 360/MINANGLE)
approximate PictureCirele
compare ModelCirele with PictureCircle

END

Algorithm 3: Circle verification using an interpolation
approach.

Picture 7 states the results of processing drcles of
different size. All dreles with a diameter larger than 20
pixels can be verified successfully. Sm aller on es fall
short of the minimal region size for straight line
approximation.

~----------------~

1\1\1\
\ _______ 1 \J \,J

/~ 1\ /\
V V \J

o o

Picture 7: Results of drele verification using an
interpolation approach based on 8 straight lines. The
drele diameters He within 30 to 85 pixels.

Arc verification follows a elosely related way. Instead of
a fixed start point the first and last point have to be
calculated by the drele equation. Additionally all
involved sectors are determined.

Picture 8: Arc verification where M = (8,8), r = 5, alpha =
202,5 and beta = 112,5 based on 8 interpolating straight
lines.

/\1\1\
\~;V\J

;-----\ 1\ /\ IVI rL Il v v \J ~I \~I \,
(\ 0 0 CJ ~ ~ U

Picture 9: Verification results of arcs varying in size (85
to 30 pixel with 360 degree)and angle (22,5,45, ... 315
degree).
Further 2D primitives within the DXF-Format may be
projected to one of the presented types. Composed
structures like squares, rectangle, etc. may be defined
for verification purposes. Complex structures are
verified by a sequence of primitive verifications (picture
11).

The application of the described proving operations is
not limited to two dimensional objects. On ce the 3D
model primitives have been projected to the image
frame using a more powerful transformation they may
be verified in the same manner. Some important CAD
models like Boundary Representations (BReps) are
based on the primitives we are using here and we hope
to verify these pretentious models after some further
work.

Picture 10: Hierarchy of the discussed verification
routines

8. THE ADVANTAGE OF PROVING OPERATIONS

The proving operations described above consist of a
.. type and parameter specific pixel segmentation
.. type specifie approximation
.. similarity function

The combination of these tasks which are usually
spread about different levels like segmentation, feature
extraction and classifieation within a single operation is
the foundation of the obtained modularity.

The discussed proving operations offer the capabilities
to decide wether there is a special image portion.
Because of the modular concept in using primitives,
these special portions cover single primitives,
substructures as weIl as complex structures, including
such useful basic forms like squares, rectangles and
others. If there is a manageable set of hypothesis this
approach prevents a costly bottom up check with
unknown borders, types, orientation and location.
Within an interactive image analysis system such
verification routines may become a powerful tool for
recognition and conversion tasks. But even when there
is no user to secure the number of hypothesis usually
there is enough apriori knowledge useful for
!imitations. Therefore we are engaged in developing a
control structure suitable in the depicted context.

The application of the described proving operations is
not limited to two dimensional objects. Once the 3D
model primitives have been projected to the image
frame using a more powerful transformation they may
be verified in the same manner. Some important CAD
models like Boundary Representations (BReps) are
based on the primitives we are using here and we hope
to verify these pretentious models after some further
work.

9. CONCLUSIONS

We have discussed algorithms for the verification of
graphical primitives. The operations are organized to
work in a strong model driven interpretation process.
The gradient direction image we are working at is much
eloser to the geometrie CAD-models than a captured
greyscale image and is elose enough to the captured
data to prevent the influence of numerous thresholds.
The described operations work on 2D primitives in 2D
images, nevertheless they may be used in 3D context
after a suitable projection.

o o

Picture 11: Intensity and direction image of a tin product and those elements, verified by the described algorithms.

650

10. REFERENCES

Ballard, 1982. Ballard, D.H.; Brown, CM., Computer
Vision, Prentice Hall, Englewood CHffs, pp. 123 ff.
Bhanu, 1987. Bhanu, B. Ho, C, CAD-based 3d object
recognition for robot vision, IEEE Computer, pp. 19-36,
August.
Bresenham, 1965. Bresenham, J.E., Algorithm for
Computer Control of a Digital Plotter, IBM System
Journal, Vol. 4, No. I, pp 106 ff.
Coy, 1989. Coy, WoIfgang; Hönisch, UIf, Cyclic
Recognition of simple industrial scenes composed of
CAD-objects, in: Proc. IIIrd International Computer
Analysis of Images and Patterns Conf. CAIP
'89(Leipzig, Sept. 89).
Henderson, 1990. Henderson, Th. C et. al.CBCV: A
CAD-based vision system, Bild und Ton, Vol. 43, No.12,
pp 364-368.
Hönisch, 1986. Hönisch, UIf, Modellierung binokular
erzeugter Bilder, Diplomarbeit, Universität Bremen.
Hough, 1962. Hough P.V.C, Method and means for
recognizing complex patterns, U.s. Patent 3,069,654.
FU,1974. Fu, K.s., Syntactic Methods in Pattern
Recognition, Academic Press, New York.
Gmür, 1988. Gmür, E.; Bunke, H. PHI-I: Ein CAD
basiertes Roboter-Sichtsystem Mustererkennung,
Springer-Verlag, Berlin, Heidelberg 1988, pp. 240.
Huttenlocher, 1987. Huttenlocher, Daniel P.; Ullman,
Shimon; Object Recognition using Alignment, Proc. of
the l'stInt. Conf. on Computer Vision, pp. 102-111,
London.
Ikeuchi,1987. Ikeuchi, K., Generating an interpretation
tree from a cad model for 3d-object recognition in bin
picking tasks. International Journal of Computer Vision,
Vol. I, No. 2, pp.145-167.
Lamdan, 1988. Lamdan, Yehezkel; Schwartz, Jacob T.;
WoIfson, Haim J.; Object Recognition by Affine
Invariant Matching Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 335-344,
Ann Arbor, Michigan.
Requicha, 1982. Requicha, A.A.G., Voelcker, H.B.,
Solid Modeling: A Historical Summary and
Contemporary Assessment, IEEE Computer, Graphics
& Applications, Vo12:2, March 1982, pp. 9-24.
Shirai,1983. Shirai, Y., Koshikawa, K.,Oshima, M.,
Application of 3-D Models to Computer Vision,
Computer & Graphics, Vol. 7, No. 3-4, 1983, pp. 269-275.
Vieweg, 1990. Vieweg, Andreas; Carlsohn, Matthias,
Modellgesteuerte Konturverfolung zur vollständigen
Segmentierung von Bildern. In: Mustererkennung '90,
Springer Verlag, Berlin1990, S. 509-510.

651

	S42BW-110042314510

