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ABSTRACT: 

A new contextual classifier has been developed and evaluated for information extraction from remotely sensed imagery. The 
algorithm is computationally very efficient, and experiment indicated that it can achieve more accurate results than the 
conventional maximum likelihood classifier and some commonly-used texture/contextual algorithms. The new contextual 
classifier includes two basic procedures: grey-level vector reduction and frequency-based classification. In grey-level vector 
reduction, the number of grey-level vectors in multispectral space is reduced using a new data-reduction algorithm through 
rotating multispectral space into eigen space. As a result, the multispectral data are reduced to images of one feature dimension 
with the loss of relatively little information. Each grey-level vector-reduced image is then used in the frequency-based procedure 
to derive useful information. The frequency-based classification procedure includes a grey-level vector occurrence-frequency 
extractor, a minimum-distance classifier and an accuracy evaluator. Landsat Thematic Mapper data have been used to illustrate 
the potential of the new algorithm. We have emphasized on land-use classification since land use is a cultural concept that is 
difficult to be mapped directly using remote sensing data. The potential of using the grey-level vector reduction algorithm for fast 
clustering has been discussed as well. 

1. INTRODUCTION 

Gong and Howarth (1992) has developed a frequency-based 
contextual classifier based on grey-level vector reduction in 
eigenspace. In comparison to other contextual classifiers, this 
algorithm is computationally efficient. They applied this method 
with the use of SPOT High Resolution Visible (HR V) data in the 
classification of land uses in a rural-urban fringe environment. 
They demonstrated that the frequency-based classifier was 
superior to not only the traditional maximum-likelihood classifier 
(MLC) but also a few other commonly-used contextual 
classification algorithms (Gong, et al., 1992). 

In this paper, the Cong-Howarth frequency-based contextual 
classifier has been applied to conduct land-use classifications of 
a urban environment similar to the one studied in Gong and 
Howarth (1992) using Landsat Thematic Mapper (TM) data. 
We will introduce the Gong-Howarth contextual classifier first 
and then report the classification results. 

2. GONG-HOWARTH FREQUENCY-BASED 
CONTEXTUAL CLASSIFIER 

2.1. OCCURRENCE FREOUENCIES AS A SURROGATE 
FOR SPATIAL FEATIJRES 

Occurrence frequency, il(i,j,v), is defined as the number of 
times that a pixel value v occurs in a pixel window centered at 
(i,j). For computational simplicity, the pixel window has a 
square shape with a lateral length of I (1)1). For a single-band 
image, v represents a grey level. For multispectral images, v 
represents a grey-level vector. Within each pixel window, one 
can obtain an occurrence-frequency table containing all possible 
vs. 

When a pixel window of a given size is moved all over an 
image(s), one can generate a frequency table for each pixel in the 
image(s), except for those pixels close to the image boundary. 
Those pixels within a distance to the image boundaries of half 
the lateral length, I, of the pixel window are called boundary 
pixels. Since full frequency tables cannot be obtained at 
boundary pixels, these pixel positions should be avoided in 
further analysis. To assure a small proportion of boundary 
pixels, the pixel window sizes used must be considerably 
smaller than the image size. 

The number of occurrence frequencies in a frequency table 
increases linearly as the number of grey levels in an image 
increases, and exponentially as the number (or dimensionality) 
of spectral bands increases. For a single-band image quantized 
into n grey levels, one can produce grey-level occurrence 
frequency tables with a maximum number of n frequencies in 
each table. The maximum number of frequencies in a frequency 
table will increase to nm when m spectral bands having the same 
number of grey levels are used. It requires a large amount of 
random access memory (RAM) in a computer to handle the nm 
frequencies. For this reason, efficient grey-level vector­
reduction algorithms are needed. One such algorithm will be 
introduced later in this paper. Frequency tables can be generated 
from grey-level vector-reduced images. 

There are several advantages to using frequency tables when 
compared with the use of spatial statistical measures, as in 
spatial feature methods. First, a frequency table contains more 
spatial information than many statistical measures. For instance, 
the most commonly used statistical measures such as the mean, 
standard deviation, skewness, kurtosis, range, and entropy can 
all be derived from a grey-level frequency table. However, 
additional computation is required to obtain statistical parameters 
after the frequency tables are produced. Therefore, it becomes 
unnecessary to use statistical measures because frequency tables 
can be quickly computed, directly compared and analyzed. The 
second advantage is that the feature-selection procedure, which 
is used to evaluate statistical parameters, is no longer needed 
because frequency tables contain more spatial information 
required for the classification than the above statistical 
parameters. Third, disk storage is not required by frequency 
tables due to the simplicity of their real-time creation. 

2.2. THE CLASSIFIER 

The classifier used in this study is the minimum-distance 
classifier with the city-block metric (Gonzalez and Wintz, 1987). 
A city-block distance between two vectors is calculated by fIrst 
obtaining a difference between every two corresponding vector 
elements, and then summing all the absolutes of these 
differences. There are two reasons for selecting the city-block 
distance. The first is that this distance is the simplest one in 
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terms of computation, and therefore it could be used to handle 
occurrence frequencies extracted from an image with more grey­
level vectors. Second, since we are comparing frequencies to 
make the classification decision, the use of Euclidian distance or 
other metrics is meaningless. In fact, some preliminary tests 
have been made in this study to compare the performances of the 
city-block metric and the Euclidian metric. Overall accuracies 
were on average 5% higher in favor of the city-block metric. 

For given mean histograms of all c land-use classes, hu = 
(fu(i )Ju(2), ... , fu(Nv)), u =1, 2, ... c, the city-block distance 
between a new histogram hZ(i,j) and hu is calculated from the 
following: 

Nv 0 

du= Lltu(v)-f(i,j,v)1 
v=o 

The classifier compares all the c distances and assigns pixel (i,j) 
to the class which has a minimum distance to hZ(iJ) . 

2.3. PERFORMANCE ASSESSMENT 

The most commonly used accuracy-assessment method is test­
sample checking. It requires three steps: determination of 
sample size and sampling strategy, sample identification (ground 
confinnation) to generate reference data, and comparison of the 
reference data with classification results to derive classification 
accuracies. The first two steps are described in the experimental 
design section. The third step is discussed below. 

For a classified image (or a map), a confusion matrix (also called 
an error matrix or a contingency table) can be made by 
comparing the classification results with reference data. In this 
matrix, the reference data are represented by the columns of the 
matrix while the classified data are represented by the rows, or 
vice versa. The major diagonal of the confusion matrix indicates 
the agreement between these two data sets. The confusion 
matrix allows various accuracy indices to be derived (e.g., Fung 
and LeDrew, 1988; Rosenfield and Fitzpatrick-Lins, 1986). 

In this paper, only the confusion matrix, the producer's and 
user's single-class accuracy (Story and Congalton, 1986), and 
the overall accuracy were used. 

3. EIGEN-BASED GREY -LEVEL VECTOR 
REDUCTION 

As explained in the above section, in order to make better use of 
the frequency-based classification technique, the number of 
grey-level vectors in multispectral space has to be reduced. The 
simplest way of doing this is by compressing the number of 
grey levels in each band of the image. In this section, it is 
demonstrated that grey-level vector reduction in multispectral 
space is not appropriate. A more efficient method that is done in 
eigenvector space will be described. 

3.1. GREY-LEVEL VECTOR REDUCTION IN 
MULTISPECTRAL SPACE 

The easiest way to reduce the number of grey-level vectors is to 
compress the number of grey levels in each individual spectral 
band. More sophisticated grey-level reduction algorithms exist 
for each individual band. For instance, Sezan (1990) proposed 
an algorithm that locates peaks and valleys from a histogram of 
an image. However, since the peaks and valleys are not located 
in equal distance, the precise distance metric in multispectral 
space is lost and this will make the distance measures useless in 
the classification stage. Algorithms such as Sezan's may only 
prove useful for image display purposes where qualitative grey­
level differences are required. 
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3.2 GREY-LEVEL VECTOR REDUCTION IN EIGEN 
SPACE 

It is well known that some bands of multispectral image are 
highly correlated. Principal component (PC) transformation can 
reduce the data redundancy effectively through transforming the 
data from multispectral space to the eigenvector space of the data 
(e.g., Richards, 1986). Since the data variability is to be 
preserved for discrimination purposes, only the first few 
principal components need to be kept for multispectral data. 
This results in a reduction of data dimension and therefore 
reduces the amount of data to be handled. 

However, Gong and Howarth (1992) demonstrated that simply 
reducing the dimensionality of the data is not sufficient if 
frequency tables are to be used in the classification. Therefore a 
new grey-level vector reduction algorithm has been developed. 
It has the desirable performance of balancing the information 
loss in the eigen space and preserving the eigen structure of the 
original data while conducting grey-level vector reduction. As 
an example for illustration purposes, Figure 1 shows the 
generalized eigen structure of the SPOT HRV data that were 
used in Gong and Howarth (1992). In this figure, only the first 
two eigen vectors and the plane they constructed are shown. 
The variance in the third PC is too small to be considered. Our 
focus is on partitioning the preserved eigen plane. Figure 2 
shows a partition of the preserved eigen plane with equal 
quantization of eight grey levels. It is obvious that along the 
second eigen axis there are too many partitions which make 
grey-level cells on the preserved eigen plane become rectangular. 
The partitioning method proposed in Gong and Howarth (1992) 
is shown in Figure 3. Because there is more variation along the 
first eigen axis than there is along the second eigen axis, there 
are more grey-level partitions on the first eigen axis than on the 
second axis. 

1st Eigen Axis 2nd Eigen Axis 

.; ............... J 
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; . 

; . 
; . 

; ; : Preserved Eigen 
; ~ Plane 

FIG. 1. Eigen structure of the SPOT HRV data used in this 
study. 



1 st Eigen Axis 

FIG. 2. Partition of the eigen space into equal grey levels along 
each eigen vector. 
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1st Eigen Axis 

FIG. 3. Partition of the eigen space using the method proposed 
in this study, 

The grey-level vector-reduction scheme can be formalized and 
generalized. Given the covariance matrix and the mean grey-
level vector, M = (mI, m2" .. ,mk)T, calculated from k 
multispectral bands of the image, the multispectral coordinates 
from multispectral Tace Sk can be rotated into eigen coordinates 
in eigen space E (Richards, 1986). Let V I, V2,"" Vk 
represent the eigenvectors. A grey-level vector, G = (gI, 

g2, ... ,gk)T, in multispectral space can be transformed into a 

grey-level vector, Ge= (VI, V2, ... ,Vk)T, in eigen space. This 
can be obtained from: 

g, 

o 

2 2 2 
Let 5 e1 , 5 e2' ... , 5 ek represent the eigenvalues corresponding 
to each eigenvector. These eigenvalues are the variances along 
each eigen vector direction in eigen space. In order to keep the 
same signal to noise level between eigen axes (e.g., to make 
square cells on the eigen plane in Figure 3), our partition of 
eigen space is so designed that the number of grey levels along 
each eigenvector is proportional to the square root of its 
corresponding eigenvalue. That is: 

where Net ,Ne2 ,·· ., Nek are the numbers of grey levels used 
for each corresponding eigenvector. As can be seen from the 
above equations, we have only k-I equations but k unknown 

variables Net ,Ne2 ,·· ., Nek . To determine all the k 
unknowns, one condition is added: 

where NE is the total number of grey-level vectors to be 
expected for the partition of the eigen space. 

To implement the eigen space partition, the origin of the eigen 
space (the same as the origin in multispectral space) needs to be 

T 
Eo = (e , e2 ' ... , ek ) h' h' h shifted to the new origin 1 w IC IS t e 

mean grey-level vector M in multispectral space. Eo is obtained 
through the following: 

Where the partition starts and how far apart each grey-level 

interval is along an eigen axis can now be determined. 2. 1 5 ei 

at each side of the origin along eigen axis i were selected as the 
starting and ending points for the grey-level partition. This was 
determined from the normal distribution curve by assuming data 
were normally distributed along each eigen axis. Based on this 
assumption, the use of 2.1 guarantees 97 percent of the grey­
level vectors in multispectral space fall into the range 

[ - 2 . 1 5ei , + 2. 15ei ] on eigen axis i. The remainder 
(less than 3 percent) will fall outside the range. Depending on 
the actual data distribution, the number "2.1" can be slightly 
adjusted to keep a majority of grey-level vectors falling into the 
specified range. The grey levels along each eigen axis are 
numbered in an ascending order from 0 with an increment of 1 

to Nei -1. Figure 4 illustrates the division of the ith eigen axis 
. N. 1 mto el grey evels. 

g2 
T. 

(V; ,V2 " .. ,Vk ) . 

1 I 2 I .Nei-2 I Nei-I 
----~----~.~--~.----«)~--------~.----~.---------4 .. --

'----v~ ei ~ ith Eigen Axis 

348 

2.lSei 2.ISei 

FIG. 4. Division of an eigen axis into a specific number of grey 
levels. 



By ~ividing each eigen axis into the number of grey levels 
obtaIned above, the original multispectral space will be 

partitioned into ~E pieces or grey-level vectors in eigen space. 
The purpose, ~hlCh IS to reduce.the large number of grey-level 
vectors m multIspectral space, WIll therefore be achieved. From 
the transformed grey-level vector of a pixel G = (v1 

T 'e ' 
v2,···,vk) ,.the reduced grey-level vector, Gr= (r1, r2, .. .,rk)T, 
can be o~tamed according to the division along each eigen axis, 
as descnbed above. For example, r 1 is reduced from v 1 
according to the following rule: 

2. 1Se1 ) ( Ne - 2)/4 .2 Set + 

if a ~ 1 
if a > Ne - 2 

else 

In order to allow the frequency-based classification algorithms 
eas~ access to the data after grey-level vector reduction, it was 
deCIded to use only one image to store the data. A labeling 
system was developed to assign a number to each grey-level 

vector created in eigen space. A number ne for a particular 
grey-level vector, Gr= (r 1, r2, .. "rk)T, is calculated according to 
the following equation: 

ne = 'k' N.... . N ' ... ' N 
.,. e2 e( k-1 ) 

+ 'k-1 Nfl' N 2 ..... N 
e e( k-2 ) 

+ ... 
+ '1 

After this labeling, all the partitioned grey-level vectors in eigen 

space will range from 0 to NE -1. 

In summary, it takes four steps to obtain reduced grey-level 
vectors using the new algorithm. In the first step, the algorithm 
generates the covariance matrix and mean grey-level vector from 
the original multispectral image by using either samples or the 
entire image. In the second step, the eigen values and their 
corresponding eigen vectors are derived from the covariance 
matrix. In the third step, the eigen space is partitioned into an 

expected number ( NE ) of pieces. Finally, the grey-level values 
of every pixel in the multispectral image are transformed into the 
eigen space and each pixel is assigned a new grey-level vector 

number ( ne ). The assignment is done according to the section 
(new grey-level vector) in the partition of the eigen space into 
which the transformed coordinates of each pixel fall. 

4. EXPERIMENTAL DESIGN 

The proposed algorithms were originally implemented with the 
FORTRAN 77 programming language on a VAX 11/785 
computer under the VMS operating system. It has been 
transported and rewritten as an additional module of PCl's 
~ASIIP ACE image analys~s so~tware. In this section, the study 
site and the land-use classlficanon scheme are introduced. The 
training strategy and the test sample selection will then be 
described. 

4.1. STUDY SITE AND LANDSAT TM DATA 

The study site is Kitchener-Waterloo, Ontario, Canada and its 
surrounding area. This site has been used for a variety of 
remote sensing studies of land-cover/land-use changes (e.g., 
Gong, et al., 1992; Fung and LeDrew, 1988). 

The Landsat TM image (Path-Row No. 18-30) was acquired on 
3 August 1985. For this research, a cloud-free sub scene of 256 
by 512 pixels was selected. Since the selected test site is small 

and relatively flat, both topographic and atmospheric conditions 
were assumed to be homogeneous throughout the image. Based 
on these assumptions, there is little or no topographic effect on 
the data and any atmospheric effects on the data are 
homogeneous in the study area. They can be considered as a 
contribution from atmospheric haze. To remove homogeneous 
haze effects from each band of the image requires only the 
subtraction of a constant from each pixel value. However, this 
would not change the radiometric structure of the data. In 
addition, the subsequent classifications used in this study are 
statistically invariant to linear transformations. Thus, no 
radiometric correction was made to the image. 

4.2. LAND-USE CLASSIFICATION SCHEME 

The land-use classification scheme is listed in Table 1. 

TABLE 1. LAND-USE CLASSIFICATION SCHEME 

Land Use Class 

Old Urban Residential 
New Urban Residential 
IndustriaVCornrnercial 
Institutional 
Cleared Land 
Crop and Pasture 
Idle land 
Water 
Golf Course 
Parks 

Code 

RES 1 
RES2 
IND/COM 
INST 
CLEAR 
CROP 
IDLE 
WATER 
GOLF 
PARK 

These land-use classes are typically found among North­
America':l ~ities. A structural description and spectral 
charactensncs of these land-use types are found in Gong and 
Howarth (1992). 

4.3. SUPERVISED TRAINING TEST-SAMPLE SELECTION 

The training procedure used in this research is straightforward. 
In order to achieve maximum flexibility, it was decided to use a 
~lock-tra!ning s~at~gy. 1?t~ advantage of this type of training is 
Its ease In specIfYIng traInmg areas. By so doing, the image 
anal,Yst also implicitly identifies the spatial structure for a 
partlc~l3! class. The shape and the. size of the training block 
c~ntam l~portant clues. for selectmg the appropriate pixel 
wmdow SIze ~o be used m generating frequency tables. Test 
sample selectlOn procedure was the same as in the training 
p~ocess, but test samJ?les were not overlapping with the training 
SItes. Therefore, bIas on final estimates of classification 
accuracies can be avoided. 

4.4. GENERATION OF GREY-LEVEL VECTOR-REDUCED 
IMAGES 

With the grey-level vector-reduction algorithm, the original six 
bands (TM 1-5 and TM 7) of Landsat TM image can be reduced 
to one image. Two factors affect the resultant grey-level vector­
reduced images. They are the method used to calculate the 
covariance matrix for constructing the eigen space, and the 
number of grey-level vectors specified for the output image. 
More detail on these factors can be found in Gong and Howarth 
(1992). 

The nu~ber of grey-level vectors specified for the output image 
deterrmnes how much detail from the original image is to be 
preserved in the output image. For this experiment, the grey­
level vector number of 50 was tested. The algorithm was 
designed in such a manner that it is independent of changes in 
the number of grey-level vectors specified. 
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4.5. LAND-USE CLASSIFICATION 

For the grey-level vector-reduced image, a pixel window of 9 X 
9 was used in the land-use classification. For comparison 
purposes, a maximum-likelihood classifier (MLC) was applied 
to the six-band Landsat TM image while training and test 
samples were the same as in the frequency-based classification. 

5. RESULTS AND DISCUSSION 

5.1. LAND-USE CLASSIFICATION RESULTS OBTAINED 
USING A MAXIMUM-LIKELIHOOD CLASSIFIER 

Table 2 shows the confusion matrix, the producer's and the 
user's accuracies, and the overall classification accuracies 
obtained with the MLC. The codes in the row and column 
entries in Table 2 represent the land-use classes as listed in Table 
1. 

5.2. LAND-USE CLASSIFICATION RESULTS OBTAINED 
FROM GREY-LEVEL VECTOR-REDUCED IMAGES 

Table 3 shows the confusion matrix, the producer's and the 
user's accuracies, and the overall classification accuracies 
generated from grey-level vector-reduced image using the Gong­
Howarth contextual classification method. It can be seen from 
Table 3 that for Gong-Howarth method accuracies from 8 land­
use classes have been improved considerably as compared with 
the results obtained with the MLC. The only class whose 
accuracy has been slightly reduced is class IDLE. The reason 
for this has been explained in Gong and Howarth (1992) that the 
spectral characteristics of land-use classes such as IDLE are 
relatively pure and such classes can be more appropriately 
classified using single-pixel classification algorithms such as the 
MLC. The overall classification accuracy has been dramatically 
improved from 83.31 % obtained with the MLC to 96.80% due 
to the use of the Gong-Howarth classification method. 

TABLE 2. CONFUSION MATRIX AND CLASSIFICATION ACCURACIES OBTAINED 
USING THE MLC 

RESl RES2 INCO INST CL CROP IDLE WATR GOLF PARK USER 

RESI 446 97 1 5 3 16 78.52 
RES2 57 444 19 34 1 2 1 79.57 

IND/COM 2 1 404 50 1 88.21 
INST 7 28 33 191 13 1 69.96 

CLEAR 1 2 11 260 94.89 
CROP 219 15 93.59 
IDLE 1 5 1 145 95.39 

WATER 93 100 
GOLF 2 1 355 7 97.26 
PARK 54 28 1 4 1 24 88 44.00 

PRODUCER 78.50 73.90 86.70 64.09 94.20 97.80 99.30 100 89.00 77.90 
IColumn 568 601 459 297 276 223 146 93 399 113 

OVERALL 83.31 

TABLE 3. CONFUSION MATRIX FOR THE LAND-USE MAP PRODUCED FROM THE 
GREY -LEVEL VECTOR REDUCED IMAGE WI1H A PIXEL WINDOW SIZE OF 9 

RESI RES2 INCO INST 

RESl 539 
RES2 6 601 10 

IND/COM 428 2 

INST 28 287 

CLEAR 
CROP 
IDLE 9 

WATER 
GOLF 
PARK 23 

PRODUCER 94.89 100 91.85 96.31 

IColumn 568 601 466 298 

OVERALL 96.80 

CL CROP IDLE WATR GOLF PARK USER 

13 
263 

95.29 
276 

350 

5 99.08 
6 96.47 

99.53 
87.50 
100 

224 100 
140 93.96 

96 100 
399 100 

108 82.44 

100 95.89 100 100 95.58 

224 146 96 399 113 

5.3. THE POTENTIAL OF THE GREY-LEVEL VECTOR­
REDUCTION ALGORITIIM IN CLUSTERING 

Based on the grey-level vector-reduction algorithm, a clustering 
procedure can be developed. It will ~ similar to a conve~tion~ 
c-means clustering algorithm, but Instead of clustenng In 



multispectral space, the clustering can be done in eigen space 
with reduced grey-level vectors. 

In the fina.I step of the algorithm for grey-level vector reduction, 
after all pIxels have been assigned a reduced grey-level vector 
number, an average of G e's for all pixels that fall into the same 
reduced grey-level vector is calculated. Let G a(i)= (aJ" 

a2, ... ,ak)T, denotes the average for those pixels falling into the 

reduced grey-level vector i , i = 0,1, ... , NE -1. These NE 

average grey-level vectors can then be clustered. Because NE is 
relatively small, the clustering process can be extremely fast. 
Some properties of this clustering method is under investigation. 

6. SUMMARY AND CONCLUSIONS 

The Gong-Howarth contextual classification method has been 
tested to classify a urban environment using the Landsat TM data 
obtained over. It involves two steps: grey-level vector reduction 
and frequency-based classification. The algorithms can be easily 
modified to conduct fast clustering. 

Test results of this study indicate that the Gong-Howarth 
contextual classification method can considerably improve urban 
land-use classification accuracies with Landsat TM data. 

Further research will be directed to reduce the pixel window 
effect as discussed in Gong and Howarth (1992). 
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