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SUMMARY

Recent developments in photogrammetry and remote sensing in doing
image transformations and enhancements pure digitally require for
theoretical secured operators than working with empirical ones. On the
one hand concepts are needed to classify the underlying methods from
a mathematical point of view, on the other hand these concepts should
easily be realized for applications.

For these reasons the paper will give some insights into digital
two-dimensional Tinear system theory as well as acts as intermediary
for applications of these systems in photogrammetry. Working with dig-
ital images however ask for simple operators, easy to design and also
to implement, what can be done quite well by finite impulse response
(FIR) Tinear time-invariant systems closer classified in this paper.

3
I. INTRODUCTION

Interest in digital image processing dates back to the 1920's, when
the first digitized images where transmitted between London and New
York by submarine cable. From the beginning there was request on im-
provement of processing methods, but could not done efficiently during
the next 35 years. The advent of developments in Targe-scale computing
and the US space program started 1964 the break-through in modern dig-
ital image processing techniques, when pictures of the moon transmit-
ted by Ranger 7 were processed by a computer at the Jet Propulsion
Laboratory (JPL), Pasadena, California. Although at this time closed .
theoretical foundations were missing, the techniques applied served as
a basis for later on improved methods used in the enhancement and res-
toration of images resulting from similar space programs.

Just as the digital signal processing discipline has been grown,
whose development is strongly associated with the development of large
scale integrated circuits, the ability for classification of digital
image processing techniques were given. Nowadays, there exist closed
theoretical concepts in digital signal processing, which can be applied
to digital image processing not only in disciplines such as archeology,
astronomy, biology, industrial applications and physics, but in digital
image transformations for photogrammetric purposes, too. Here we have
to eliminate some noise of scanned image rows or to interpolate 'white'
pixels or whole 'white' rows to form a digital image data base for
further processing, to name only two commcn problems arising during
the data acquisition process (P. Nowak, 1978). The image might also be
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blurred by any motion, what means, the motion of the sensor has to be
cancelled or the sensor was defocused during the exposure resulting in
an unsharpened picture what has to be sharpened.

A1l these operations ask for computer-aided image processing tech-
niques to improve the image quality; theve are also possibilities to
derive photogrammetric products without using any analytical plotter
if one is thinking on preliminary situation maps for cartographic
purposes. Therefore the aim of this paper will be to show up the per-
formance of digital two-dimensional Tinear time-invariant systems in
solving all the problems above. These systems are bounded only on
enhancement and restoration of the digital image without totally
change of the image geometry as it is the case in image rectifications.
Also image correlation techniques will be excluded from linear time-
invariant system (LTI system) theory in this paper at this time.

II. LINEAR TIME - INVARIANT SYSTEM THEQRY

Let be given the digital image as spatially sampled light-intensity
function denoted by x(m,n)¥m,ne Z (Zb"). The array element x(m,n) for
fixed m,n is commonly called 'picture element' or shortly 'pixel' or
'pel’ and indicates the gray-level quantization of the 1ight intensity
function. The image enhancement or restoration can be written as

y(m,n) = o [x(m,n)] (1)

whereby ¢ characterises the desired image processing; it is proposed
to be linear and time-invariant what means

@[.§ a;x;(myn)] = ’E a;0[x;(m,n)] (2a)

J==-x = =co
y(m-k,n=1) = o[x(m-k,n-1)] (2b)

For example, if the gray-level has to be raised or reduced, the opera-
tion of the LTI-system can be written as

y(m,n) = x(m,n) = b s bEZ (3)

and will not be considered furthermore because it is the trivial case
for LTI systems.

The important class of LTI systems will be described not only in the
time domain but also in the frequency domain. Let be the input of the
LTI system the unit sample d(m,n) with response of the system

h(m,n) = o[d(m,n)] (4)
which is called impulse response or point spread function. The z-trans-

form of h(m,n) will be (V.Capellini et al, 1978)
k_~-1

<]

H(zy,22) = T 1 h(k,1)z;

= =00 = =00

(5)
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and delivers for stable LTI systems (D. Fritsch, 1982) with zl=eJml
and z,=eJ“? the continuous in general complex frequency response

H(eJ91,e392) = 7 T h(k,1)e d@1¢7d02 (6)

== = =00

that means H(erl,ej“Z) is the Fourier transform of the impulse re-
sponse h(m,n) with frequency variables wj,w,€[0,2r].

In general the output y(m,n) and the input x(m,n) are functionally
related by the Tinear inhomogenious difference equation (S.K. Mitra /
M.P. Ekstrom, 1978)

o« co

I a(k,1)x(m-k,n-1) = .E b(i,3)y(m-i,n-3) (7)

)
k:-cn T - T = =0 J:-oo

Taking the z-transform of both sides delivers

1]

B(Zl :Zé)Y(zl 922)
H(z1,25)X(21,2;) (8)

with H(z1,z2):=A(z1,22)/B(z1,22). In dealing with finite impulse re-
sponse LTI systems let b(0,0):=1 and b(i,j):=0Yi,j€Z\Z, as well as
the summation indices be finite so that (7) can be written as

~

A(z1,25)X(21527)
==t Y(Zl 322)

K-1 L-1
y(msn) = E Z h(k,l)x(m-k,n-])
h=0 1=0"
= h(m,n) « x(m,n) (9)

with h(k,1):=a(k,1). Under the assumptions above the z-transform of
b(i,J) will be constant with B(z;,z5)=1 V 21,2z, and H(z1,25)=A(Z1,25);
the convolution (9) in the time domain results into multiplication in
the z-domain or frequency domain depending on the transform variables.

III. FREQUENCY RESPONSES FOR IMAGE ENHANCEMENT AND IMAGE RESTORATION

A1l the image processing techniques by means of LTI systems have to
be considered in the frequency domain, where different image models
are supposed to be valid.

(1) Let us at first introduce the illumination-reflectance model
x(myn) = i(m,n) r(m,n) (10)

with 0<i(m,n)<~ as illumination array and O<r(m,n)<1l the reflec-
tance array, respectively. The nature of i(m,n) is determined by
the Tight source, while r(m,n) is given by the characteristics of
the scene objects. Practically the values of i(m,n) are finite,

so that x(m,n)€ [Gpip, Gmay ] or x(m,n)€ [0,G] with x(m,n)=0 is
considered black and x(m,n) = G is considered white on the scale.
The illumination component varies slowly, that means it can be re-
presented by Tow frequencies, whereby reflectance tends to vary
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abruptly particularly at dissimilar scene objects and is therefore
represented by the higher frequencies in the frequency domain.

Let (10) be written into
v(myn) = In [i(myn)] + 1n [r(m,n)] (11)
ahdwtakjng the z-transform of (11)
V(z1,22) = I(z1,22) + R(z1,23) (12)
any enhancement process can be written as
H(z1,22)V(21,22) = H(z1,25)1(21,2)+H(21,22)R(21,25)  (13)
or in frequency variables
U(ede1,ed92)pedut oJw2yp(edur gdwayyyedur gdwzypedul qwz)
(14)

with U(ed¥l,ed¥2):= H(ed¥1,ed¥2) y(ed®1 oJ¥2) a5 Foyrier transform
of the enhanced image and H(eJ®1,ed®2) as amplifier function de-
pending on the frequencies to be raised or reduced; this process
is also called 'homomor-
phic filtering' (T.G.
‘H(ejwl ejwz)] Stockham, 1972). The fre-
i ’ ‘ quency response of an am-
Y+ plifier will look like
, Fig. 1. The complete spe-
1+ cification will be obtained
by rotating the cross sec-
1 tion 2r about the verti-
cal axis and will decrease
0 ' low frequencies and ampli-
— fy the high frequencies to
0 T W2 provide for simultaneous

Fig.l: Cross section of a circular dygamTCtigggeeiﬁgﬁzgaz;gn
symmetry amplifier frequency and con .
response function.

(i1) Secondly let us consider the signal-noise model
x(m,n) = y(m,n) + r(m,n) (15)

where the image x(m,n) is the sum of the signal y(m,n) one is
searching for and the noise component r(m,n) to be removed during
the image processing by means of an optimal filter function. The
optimal filter will be derived by the minimum mean square error
principle (MMSE principle) introduced by N. Wiener (1949)

K-1L-1

o2 = El{y(m,n) - ] ] h(k,l)x(m-k,n-1)}2] =min  (16)
k=0 1=0
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with E as expectation on the stochastic process y(m,n) with its
estimate y(m,n) being presented as convolution sum between the
impulse response h(k,1) of the Wiener filter and the image x(m,n).
In using orthogonality relations for (16) it can be represented

as K-1 L-1
E[{y(mon) - J ]ZO h(k,])x(mfk,n-l)}x(m-n,n-x)] =0 (17)

K,XéZ(Z:)

so that by taking the expectation on both terms the discretized
Wiener-Hopf integral equation results

K-1 L-1

Ry (653) hzo 120 h(k,1)R,, (k=k,2-1)

h(s2) % Ry (k52) (18)

with cross-correlation array R « and auto-correlation array R
depending on the lags « and rY By means of the z-transform
(18). delivers

XX

S s
H(zy,2,) = _Zﬁﬁfi_iil_ (19)

Sy (Z1522)

and with E {y(m;n)r(m-K,n?k)] = 0 the frequency response of the
Wiener filter can be given ,

jle jw?_
. . e e
H(EJNI’QJWZ) - Yy( )

. . (20)
Syy(ejwl,eq“2)+srr(e3w1,e3“2)

depending on the power spectra Syy and Syp. The frequency re-
sponse for homogenious and isotropic stochastic processes will
look 1ike Fig.2 (D. Fritsch, 1982); the complete specification
results by rotating 2r
about the vertical axis
1 ] and passes lower frequen-
éIH(erl’erz)i cies more or less un-
changed, whereby the higher
1 + frequencies have continu-
ously been attenuated to
remove white or colored
noise within the image.
Also blurred digital

0 images might be restored
T by means of Wiener fil-
0 T W]swp tering with similar fre-

. : . quency responses.
Fig.2: Cross section of circular P

symmetry Wiener filter
frequency response function.
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(iii) As next application image sharpening by highpass filtering and
gradient techniques, respectively, will be considered. Let the
image x(m,n) be composed by the lower frequency array y(m,n) and
the higher frequency array z(m,n).

x(m,n) = y(m,n) + z(m,n) (21)
Taking the z transform of (21) delivers
X(z1,22) = Y(z1,25) + Z(21,25) (22)

so that by substitution of z;=e?®! and z,=eI%2 the Fourier trans-
forms are given

K(elU1,e792) = y(edu1 6d2) 4 7(ed1 o302 (23)

within the frequency domain for Y(ed®1,ed%2)€ [0,uc]and
Z(erl,ej&Z)EE»c,w], circular symmetry supposed to be valid. To
filter out the Tower frequency array let us introduce the filter
function H(eJ®l,edw2) of a highpass filter with zero phase spec-
trum argH(eJ¥l,ed®2):=0 and its magnitude

IH(ejwl,ejMZ){z {D wl’“ZE[O;wC} (24)

W1 sWo E[wc,ﬂ']

‘!H(eJml,erz)} this filter function elim-

- ' inates all lower frequen-
cies and permits to pass
all higher frequencies by
unchanged phase spectra.
The result can obviously
be written as

1...

S

0 mC T WysWw»

Fig.3: Cross section of the ideal
frequency response of a
circular symmetry highpass
filter.

]H(ejml,ejmz)l}X(ejwl,ejwz)]=}H(ejw1,ejwz){IY(ejwl,ejwz)l +

+ }H(ejwl,éjwz)][Z(ejwl,ejmz)l

|H(eI91,e092) [ [x(ele &302) | = |z(edor,eduzy (250




argH(e991,e992) + argx(ed®1,ed2) = argH(ed¥1,ed92) +

+ argZ(ejwl,ejwz)
argk(ed¥1,ed92) = arqz(ed¥1,edv2)  (25p)

In using gradient techniques different procedures will reach the
goal, which all are based on differentiation of the image. Let
the Tight intensity function be written as x(u,v) with its sam-
pling x(m,n). The gradient of x(u,v) at coordinates (u,v) is de-
fined as the vector

g(u,v) =grad x(u,v) = [ééé%ill

9

20 ] s)

and points in the direction of maximum 1ncreas1ng rate of x(u v)s
its magnitude can be given as

(upv) = [guv)] =[(2L0 ) (20"} V2 ()
|9(u,v)|

ou av

In digital image processing the derivatives of (26) will be ap-
proximated by differences

éiéglll Axu(m,n) . géggill = Axv(m,n) (28)

which are depending on the neighborhood being enclosed. If we
look for example in the u direction to get differences like

Ax;(m,n) = x(myn) - x(m+l,n) (29a)
Axu(m,n) = x(m-1,n) - x(m,n) (29b)
) or

Axa(m,n) = %(AX5+AXS) =-%[x(m-l,n)-x(m+l,nﬂ (29¢)

the differences can be written as convolutions
Axu(m,n) = hu(m) #  x(m,n) (30a)

Axv(m,n) = hv(n) # x(m,n) (30b)

with h (m) and hy(n) as impulse response resulting from the
purely complex frequency response (S.D. Stearns, 1975)

Hed®) = o | (31)
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‘IH(er)l : .
of the digital differen-
tiator. Naturally the
Tength of h,(m) and hy(n)
/2 + will be bounded on the
immediate surrounding of
the sample x(m,n).

$ $ -
0 /2 T w

Fig.4: Frequency respanse of
an ideal digital differ-
entiator.

The gradient array results then simply by subst1tut1ng (27)
a(mn) =[x, (men)2 + ax, (myn)7] 72 (32)

It should be noted the (32) is proportional to the difference in
gray level between adjacent pixels, that means the gradient will
be nearly zero for regions with nearly constant gray level and
assumes large values for prominent image edges. For these reasons
it may be advantegeous to interfere the gradient array with the
original image

p . = [9(m,n) Yg(m,n) 2 T -
g(m,n): = {x(m,n) otherwise (33)

to emphasize significant edges without destroying the charac-
teristics of smooth backgrounds, where T is any nonnegative
threshold. There are other variations possible depend1ng on the
task being solved.

IV. APPROXIMATIONS OF FREQUENCY RESPONSES

Once the frequency response of a LTI system is given the impulse
response has to be calculated. Because of dealing with finite impulse
responses for easier implementation and also inconsistencies within
the frequency response this calculation, called 'design' (D. Fritsch,
1983), will be done by approximations not of ideal frequency responses
but of frequency responses being realized (D. Fritsch, 1982).

A well known approx1mat1on procedure not only in photogrammetry as
well as other engineering disciplines is the method of Teast-squares.
Let the ideal frequency response be H(eJwi, erZ) and the frequency
response be1ng realized H* (edwl, erZ), then the method of Teast-
squares minimises the total mean square error

T . R % s . 2
o2 = [ [ (JH(eI1,e32)| - |H (e91,e7%2)]) "duidu, = min

(34)
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2
within the two-dimensional frequency space C . (The one-dimensional
case results from (34) by setting the frequency variable w, to zero).
To control the phase spectra of the original and the processed digital
image the LTI system should have linear phase, from which zero phase
can be derived (D. Fritsch, 1982). The following relations for even
frequency response magnitudes of linear phase LTI systems are then
true

.. R=1

. . L1 K1) /2 (L1} /2
H.Telmx’e]mz) = e"J{(-—Z—)w,-(—(_i_)mz}( z)/ ( Y/

z a(k,l)cos(kw;lcos{(luw,)
k=0 1=0
(35)

with odd K,LEZZg to ensure the same pixel position after processing.
The impulse response results by simple substitutions

K-1 L-1 K-1 L-1

a(Q,0) = h('—z—,,"z—‘) a(o,l) = 2h (——2—-,-——2—-1) (36)
' K=1_, L=1 - K=1_, L-1_
alk,0) = Zh(-—z——-k,—z—) a(k,l). 4h ( 5 'k, S 1)

the relations for odd frequency response magnitudes of LTI systems e.g. the
differentiator used,in this paper can be given by (L.R. Rabiner /
B. Gold, 1975) in C

: ‘ K-1 ) (K-1)/2

H (&) = ) g kzl c(k) sin(wk) (37)

where the impulse response results

c(k) = 2n(&Lak) Ry =0 (38)

also here odd KEZQS has been supposed for the same reasons as above.

To evaluate (34) the continuous frequency domain €2 (C!) has to be
sampled to transform the integral equation into numerical notation as
it can be done with

n{H(ejwl,ej“2)|- }H*(ejwl,ejwz)ﬂlz = min (39)

here | - ||, denotes the 1, norm. If the whole €2 (C!) has been equi-
distant sampled the following model can be given (D. Fritsch, 1982,
1983)

Yy -e = (ApAy)x (40)

with Ay as coefficient matrix in the w;-direction, A, the coefficient
matrix in the wy-direction and x the vector of the unknown impulse
response coefficients. The vector y contains the values of the fre-
quency response being realized and e is the vector of approximation
errors, where e denotes the usual Kronecker product

(A1 Az) = [ajshs] (41)
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For computational reasons the model (40) of vector equations will be
transformed into the matrix equation model

Y - E = ApAl ()

with y=:vecY, e=:vecE and x=:vecX in having now all the advantages of
array algebra at first introduced and used by U.A. Rauhala (1980). The
solution of (39) within (42) Teads to

. -1 -1 |
X = (AsAy) ALYA(A1A;) | (43)

with the estimates of the goodness of fit of the approximation
E = Y - AA] (44)

To proof the_approximation it may be advantegeous to transform
Y:=A2XA{ or E on the log scale

Nogio = Wijlogy,! (20 10916(¥43)) (45a)

quglo = (eijTOglo) (20 IOglo(eij)) (45b)

to see the approximation in dB as it is usually done in digital signal
processing, because this presentation is much more sensitive as the
linear scale. ~

V. CONCLUSIONS

This paper presents ijmage enhancement and restoration as application
of linear time invariant system theory. It was shown that important
image processing products can be formulated by considering the desired
processing within the frequency domain. The operators where derived as
approximations on the frequency responses by the method of least-
squares what could be improved by inequality restrictions within the
solution space to search for a 1, approximation (D. Fritsch, 1983).
The implementation of these operators can be done by the direct con-
volution sum, which was also introduced in the paper, because it seems
reasonable in dealing with less coefficients providing for fast image
processing.
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