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1. Introduction

Future sensors of the linear array type will return lines of data
which are independent in the sense that there is no data tie
between them. It is essential for mapping and stereo work that
the data lines used for analysis be in precisely the correct
geometrical position. If the sensed image 1ines are not in the
correct positions, interpolation or other compensation must be
used before analysis. Position determination depends on the exact
knowledge of the platform attidude. While the spacecraft control
parameters will be marginally adequate, the problem is exacer-
bated with an aircraft platform due to the ubiquitous platform
instability. The use of ground control points will be necessary
for precise tie to the ground, but would be cumbersome for conti-
nued use for the altitude tracking, and in any event, surveyed
ground control points will not be available for many areas. What
is needed is a system, capable of analyzing the platform motion
from the collected image information, which can be used to verify
the platform stability and to provide the data for geometric
correction. This may be used to further improve the expected good
performance of the platform or to compensate for any degraded
performance.

2. System design

The design concept of the attitude tracker system was proposed by
F.C. Billingsley (Bi11ingsley,1982). Consider a 3 X 3 array of
small (relative to the length of the imaging line array) square
imaging devices placed in the focal plane of the camera (Figure
1.
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Figure 1. System gecmetry.




A1l nine images are read simultaneously into a set of memories.
For each image the displacement between it and a prior correspon-
ding image taken within a short time interval is calculated. The
set of nine displacement vectors form the data for determining
the change in attitude occuring between the two samplings. The
time-sequential set of displacement vectors may be used to calcu-
late the platform attitude variation history, and to generate the
geometric correction parameters. Data analysis follows the well
known stereo compilation principles. The effects as seen in
normal stereo compilation practice are given in Figure 2 (from D.
H. Alspaugh, 1979). Figure 2 shows the displacement vector compo-
nents, resulting from translation in three dimensions and three
Euler rotations (roll, pitch and yaw).
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Figure 2. The image motion vector set.

3, Formulation
3.1 Geometry

Figure 1 shows the geometry of the problem. Nine square imaging
devices (32 X 32, 64 X 64, etc. pixel CCD arrays) are placed in
the focal plane of the instrument. We select the frame of
reference (x,y,z) tied to the instrument so that the z-axis is
perpendicular to the focal plane, pointing to the zenith, x-axis
pointing in the direction of platform motion and y-axis forming
the righthand system. The origin of this frame coincides with the
center of the center array #5. We also select an inertial frame




(x'»y',z") such that the plane (x',y") coincides with the ground
plane, origin being in the nadir point. We restrict the
derivation here to the flat Earth approximation, assuming that it
can be easily generalized.

3.2 Lookpoint model

The attitude of the platform can be best described by the set of
Euler angles: roll, pitch and yaw. The lookpoint, that is the
point on the ground, imaged by a detector element (pixel), is the
point of intersection of the light ray, emanating from the pixel
and coming through the focal point, with the ground plane. For
the nine arrays the vector, colinear with such a ray has compo-
nents:

= T
r"(xp,yp, )

where:
Xp, Yp define the pixel position;

f is the focal Tength of the instrument.
The platform attitude in the ground reference frame after an

arbitrary rotation is most easily defined by a set of Euler
matrixes:

1 0 0 cos(w) 0 -sin(w)
M{¢)={0 cos(¢) sin(¢) M(w)= 0 1 0
0 =sin(¢) cos(¢) | sin(w) 0 cos(w)

cos(X) sin(X) O

(3.2.1) M(X)= =sin(X)  cos(X) 0
0 0 1
where:
o is roll angle;
W is pitch angle;
X is yaw angle.

The combination of three Euler rotations is determined by the
matrix product M(o,w,X)=M($)M(wIM(X), so that the components of r
in the ground reference frame are defined as:

(3.2.2) rt(xt,y',z")=Mr(x,y,z).

Now, from the similarity of the triangles, the ground ccordinates
of the Tookpoint P(Xg,Y5) are easily obtained:

(x"/z")H;

]

(3.2.3) Xg
Y

it

g = (y'/z1H;

where H is the altitude of the platform.
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3.3 Attjtude restoration

We thus obtained the ground position of the lookpoint P as a
function of the Euler angles and altitude:
(3.3.1) PX,Y=P(r'(¢,w,X),H)=P(M(¢,w,x)r,H).

Here vector r 1is only a function of the camera geometry,
depending on the location of the pixel in the focal plane and on
the focal length. The left part of equation (3.3.1) is obtained
by measuring the components of the displacement vector, by
comparing the time-sequential images for each detector array, as
described before. Each detector array yields two equations, one
for every vector component. Since the dependency of the vector
components on altitude H is clearly linear, H can be omitted (set
to 1), this corresponds to a simple scale change. In the
particular case of nine arrays one obtaines the system of 18
equations, as follows:

X1=X(M(¢,w>x)rl);
Y1=Y(M(¢,w,x)r1);
(3.3.2) :

x9=X(ﬁ(¢ :LU;X)T'Q);

Y9=Y(M(¢ 9033)()!'9) .

We can now resolve (3.3.2) with respect to¢ ,w andy. Since this
system is overdetermined (the number of equations is greater than
the number of unknowns) we apply the standard least-square
fitting procedure. The solution is greatly simplified in the case
of small angles, when the rotation matrix can be replaced by its
Tinear approximation, as follows:

. 1 X -0
(3.3.3) M($,w, X )= |=x+w 1wy ¢
=P X+ b 4wx 1

Formula (3.3.3) is obtained by multiplying matrixes M(s), M(uw)
and M(x) from (3.2.1) and replacing sin(a) and cos(y) by o and 1
respectively. Now equations (3.2.2) can be re-written as follows:

X=X _+vY_ -wZ

pritpTr4pi
(3.3.4) y'=(-x+¢w)Xp+(1+¢wx)Yp+¢Zp
t={ = - PR
z'=( ¢x+m)xp+( ¢+wx)Yp+zp

and, substituting (3.3.4) into (3.2.3) and retaining only the
first order terms with respect to ¢ , w and x we finally obtain:
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(3.3.5)  Xg=(x'/z"=[ X/Z + ¢XY/Z2 - w (1+X2/22) + XY/Z 1;

Yg=(y"/z"=[ Y/Z +$(14Y2/22) - wXY/2? - xX/Z 1.

3.4 Displacement vector extraction

The left part of (3.3.5) represents the components of the
displacement vector, and must be determined as a result of the
measurement.,

To compute the displacement we use the phase correlation
technique, described by Kuglin and Hines (Kuglin and Hines,1975).
The phase correlation method uses the fact that the information
pertaining to the displacement of two images resides in the phase
of the cross power spectrum. The phase correlation function is
obtained by first computing the discrete two-dimensional Fourier
transforms, and extracting the phase of the cross-power spectrum
of two images, Gy and Gy:

and then computing the inverse Fourier transform of the phase
array

d =F-l { &Jf 3.

The Tast equation yields a sharp peak located at the position
corresponding to the displacement vector.

This method is relatively scene-independent, exibits an extremely
narrow correlation peak, and is insensitive to narrow bandwidth
noise. However, in the digital implementation used, only integer
pixel displacement are used, so that displacement to only the
nearest pixel is available.

4, Simu ion

4,1 Lookpoint mode]l and image extraction

For the purpose of this simulation, the displacement vector
components are determined from the comparison of the time-
sequential subimages, extracted from a LANDSAT Thematic Mapper
frame,

The square detector array not parallel to the ground will
generally image a trapezoidal area. To extract the portion of the
TM scene as "seen" by our nine arrays, we first compute the
location of the corners and the centers of the nine array




projections onto the ground. The results of these computations
are shown on Figure 3, Shown here are the outlines of the
detector arrays, subjected to the simultaneous roll, pitch and
yaw of +0.1, -0.1 and 0.0 radian.

Figure 4 shows the path on the ground traced by the nine detector
arrays when the translation is applied simultaneously with the
Euler rotations.
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Figure 3. Projections of the nine arrays onto the ground
at the roll, pitch and yaw values of 0.l
and 0.0 radian.
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Figure 4. Ground path of the detector arrays.




In the small angle approximation trapezoidal projections of the
square detector arrays can be accurately approximated by
parallelograms, with the center, located at the intersection of
the trapezoids diagonals, Extraction of the parallelogram
subimage from the TM scene can then be done rather efficiently.
The pixel values for equally spaced nodes of the paralielogram
grid can be computed by the bi-linear interpolation of the four
adjacent pixel values of the TM image. The time-sequence
extracted in such a way is presented on Figure 5.

Figure 5. Time-sequence of images for detector #6.
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4;2 Least-squares method validation

To test the approach described in section 3.3 we generated a
sequence of lookpoint locations, varying roll, pitch and yaw from
-0.1 to +0.1 radian, sinusoidally, with the period of 60 points
and a phase shift of 0.79 and 1.57 radian. Then we resolved the
equations 3.3.5 in the least-square sense. The results are shown
on Figures 6 and 7. The deviation of the resolved angles from the
original is very small everywhere, except near #0.1 radian, when
the Tinearization is no longer valid.
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Figure 6. Original Euler angles.
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Figure 7. Recovered Euler angles, resolved by the least-squares
fit, using displacements derived from the modelled
angles.




4.3 Complete simulation

The results of a complete simulation are presented on Figure 8.
We extracted the time-sequence of subimages for all nine detector
arrays, by means of the two-dimensional FFT calculated the
displacement vectors, and used those in the equations 3.3.5 to
determine the attitude history.
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Figure 8. Simulation results, using displacements,
derived fromm the FFT correlator.

One can immediately see that the extracted attitudes remain
accurate only for a few initial iterations. The obvious and
expected reason for errors is the accumulation and propagation of
the measurement errors. In the equations (3.3.5) the ground
position at every step is not a result of a direct measurement,
but is calculated as a vector sum of a previous position and a
displacement at this step.For n-th step we have:

rh=r'h-1 *4r,
where ar, s measured by the FFT correlation.

For the correlator used, which determines the displacement to
only the nearest pixel, the displacement vector accuracy is
determined by the size of the resolution element of the detector
array, and is equal to 1/2 the size of the pixel. It also depends
on the frequency of correlations or, conversely, on the amount of
overlap of the correlated subimages (i.e. the smaller the
displacement, the larger relative error will be).




5. Conclusions and future work

We showed that it is possible to restore the attitude history of
the platform by resolving the linearized system of motion

equations and using the measured displacements of the small

portions of the imaged scene.
The future research can progress in two directions:

1. System's design parameter simulation (size and spacing of the
detector arrays, ratio of focal length to size, size and number
of the resolution elements per array) to determine the optimal
parameters for the eventual instrument, for both the satellite
and the aircraft platforms.

2. Use of the Optimal Estimation methods (Kalman Filtering) to
deal with the error accumulation problem.
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