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ABSTRACT

Geometric precision of determining the position of detail in a digital image
is considered. A mathematical model is developed to establish a bound on the
geometric precision of a type of detail. Geometric precision is shown to be
more strongly dependent upon dynamic range than upon sampling interval so
that storage efficiency is maximized by trading a smaller sampling interval
for a larger dynamic range. Using the bounds on precision derived from the
model it is shown that in the presence of noise a reduction in sampling
interval beyond some limit yields no improvement in geometric precision.

1. INTRODUCTION

The question of geometric precision and accuracy is a familiar one in
photogrammetry. The analysis of geometric properties of digital imagery
has received relatively little attention in comparison to that of more
classical systems using optical and photographic imaging methods. As
automation and computers become increasingly integral to photogrammetric
analysis, the use of digital imagery by photogrammetrists will increase.
The bulk of the digital imagery available today is from satellites. This
imagery has been analyzed more in terms of resolution and classification
than in terms of geometry. Digital processing of photogrammetric imagery
is often for the purpose of generating lower resolution digital elevation
models or orthophotos. These techniques do not directly involve geometric
information on a scale smaller than one pixel. In order to accomplish
photogrammetric analysis on digital data to the level of accuracy currently
possible with opto-mechanical equipment and photographs, within reasonable
limits of digital data quantity, we must be capable of extracting as much
geometric information from a digital image as possible. To this end, sub-
pixel positioning and its limitations must be well understood.

The quantization of digital imagery in both space and intensity leads to
analytic issues which are somewhat different from those of continuous
imagery. Quantization noise and interpolation errors are examples which
are characteristic and important to digital data but of minimal
significance or irrelevant to continuous data. Some of the difficulties
specific to digital imagery are overcome by incorporating statistical
techniques such as modelling quantization and interpolation errors as
additive Gaussian noise. Techniques which have been developed for the
analysis of continuous systems are often applied in an approximate sense to
the discrete case. For example, Forstner (1982) uses an approximation for
derivatives and Kumer (1982) approximates continuous linear operators.
Such techniques are often successful but they may copnceal underlying
properties specific to digital imagery.

This work is directed towards establishing a basis for the analysis of
geometric precision in digital imagery in a manner which avoids, as much as
~possible, presumed correspondence with continuous systems and the use of
statistical techniques. In addition, some independence from image content
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is sought. More specifically, a bound on sub—pixel pointing precision will
be derived based on a simple image parameter.

Resolution and precision are different but related concepts in digital
imagery just as they are in photography. Resolution is associated with
recognizability, while precision is associated with locatability.

Resolution is related to the ability to distinguish two closely spaced
objects, while precision is related to the error in estimating the distance
between two (resolvable) objects. Recognizable objects within an image are
referred to as "detail"”, thus we will be exploring precision of estimates of
the geometric position of image detail. ‘

The geometric precision which is obtainable from a digital image may be
restricted by a number of factors. The pixel size, scanning pattern,
aperture shape and size, dynamic range, and character of image detail will
all affect the precision. Knowledge of the available precision may be
useful in many ways: The design of control points to be included in
digital imagery, and the selection of properties of the image scanning
equipment may be directed by their effect on the geometric precision in the
resultant image; image 'correlation' procedures might use a measure of the
available precision to dynamically set parameters of the algorithm; various
algorithms may be compared on the basis of how close they come to a known
upper bound on precision and the trade-offs among parameters such as '
aperture size, dynamic range, and sampling interval may be evaluated.

The contents of the image plays an important role in determining the
available geometric precision. To illustrate this point, consider the case
of two long straight parallel railway tracks. If the two tracks are
regsolvable, however well, then by performing a simple fitting algorithm a
very good estimate can be made of the gauge of the railway. In contrast,
any estimate for the length of one railway tie (considered in isolatiomn)
will be much less precise.

This dependence on image content makes it unlikely that geometric precision
can be clearly defined independent of application. The use of standard
targets such as bar charts has been the time honoured basis of resolution
measurements. A similar approach may be in order for general precision
measurements in digital imagery but, for specific applications where
objects of known shape are to be located, a more detailed analysis may be
necessary.

A formal mathematical model is presented in section 2 for image detail in the
absence of noise. The intention is to establish a methodology and framework
by which geometric precision in digital imagery may be analysed rigorously.
The model divides a pixel into regions, each of which is refered to as a
'locale’'. The number of locales within a pixel provides a bound on their
size, which in turn will bound the available geometric precision. The
development of the formal model is prefaced with an heuristic discussion, and
followed by some illustrative examples.

Based on the formal model, a bound is established in section 3 for the number
of locales, and the implications to data storage are discussed in section 4.
In section 5 a bound is established for geometric precision with noise in the
image. The space-optimal configuration of scanner sampling interval and
number of bits per pixel is discussed.
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2. FORMAL MODEL OF GEOMETRIC PRECISION

In this section a mathematical model is developed for geometric precision.
Before proceeding with the development, we will discuss some of the ideas
informally. The main concept is that of a 'LOCALE', which represents a set
of indistiguishable positions for an image detail. The locales are
positional equivalence classes which partition each pixel. The image
detail under consideration is formalized as an 'ENTITY'. The entity
incorporates the properties of the imaging system, including for example,
the intensity response function of the scanner, the transfer function of
the scanning aperture, and systematic distortions of the imaging system.
The pixel values of the digital image are sampled values of the entity so
that the entity corresponds in a way to a continuous image of the object.
The pixel values are determined from the entlty exclusively by the sampling
interval of the scan. -

The development presumes, but is not dependent upon, a regular scanning
grid. The term "aperture” will be used here to refer to the effective
scanning aperture of the system and should not be confused with the
interval of the scanning grid. The aperture size is implicit in the
definition of the entity. The scanning system is assumed to provide a
uniformly spaced square grid of pixel values. This spatial quantization
will be referred to as a scanning or sampling pattern whereas intensity
quantization will simply be referred to as quantization, provided no
ambiguity arises.

A formal definition of geometric precision is not explicitly
presented, instead the discussion revolves around the definition of a
locale. An example of a definition of geometric precision in terms of
locales might be as follows:

Definition:

"The geometric precision of an entity is the reciprocal
square root of the average area of the locales in a pixel;
the geometric precision of a digital image is given by the
geometric precision of the 'standard' entity defined
as a bivariate Gaussian function scaled so as to fully
utilize the dynamic range of the pixel and to have the
scanning interval correspond to one standard deviation"

This definition incorporates an entity which is about the same size as one
square of the scanning grid. Anything much smaller than this is not
resolvable in a digital image. Since the precision with which one can
locate an entity generally improves as the entity gets larger, by selecting
a small standard entity the definition gives geometric precision in terms
of a 'worst—-case' situation.

If the scanning interval is the same as the aperture size then, unless the
dynamic range is very large, only the immediately adjacent pixels will
contain information on the position of such an entity. The locales will be
determined by the pixel values in these neighbouring pixels. These pixel
values are referred to collectively in this paper as the 'IMAGE FUNCTION',
which is a set valued function of the position of the entity. A locale
corresponds exactly with the set of all positions mapping into a given
value of the image function.

We now proceed with the development of the formal model of these concepts.




An object which corresponds to an image detail is modeled as a two-—
dimensional reflectance function R (x,y). Some point (xo,yo) is designated
as the position of the object. Let R, (x,y) denote the object positioned
at the origin, so that

R (x,y) =R, (x =%, ¥ 5 Y,) (2-1)

Let P.. be .the value of a pixel in a digital image of the object, and let
(xij,yi.) be the position associated with the center of the pixel. We will
assiume %hat Pij may be expressed as the quantization of a convolution;

Pij = [cTij * R) (Xij’ yij)}

]

[(Tij * RO) (xij - X5 Yij - yo)lN
(

(8505 = %6 755 =907

= Hi (g5 = %55 v45 7 V) (2-2)

for some transformation function T,. where [']N denotes quantization, *
denotes two-dimensional convolution” and Hi. is as discussed below. In
order to represent P,. in this way, the imaging system must be spatially
invariant and linear 4]. While these are not generally true assumptions,
they may be reasonably good approximations locally for a limited range of
reflectance. The transformation T is subscripted with the pixel index
(i,j) to reflect the local nature of the representation.

The functions H,;. and their quantized counterparts ﬁi" which are

defined in terms” of Ti' and R over the (continuous) cdordinate variables
(x,y), will be referre% to, collectively in i and j, as an "entity"”, or
"quantized entity" respectively. The convolutions of R with Ti‘ results in
Hij being generally quite smooth and well behaved. We will preSume that
H,: is non negative and is greater than zero only on a region of finite
area.

3]

The pixel value P.. is just a sampling (i.e., point evaluation) of the
quantized entity. A shift in the object's position corresponds to a shift
in the sampling of the entity. It will be convenient to assume that all
the Hi. are identical, that is, Ti' = T. In this case we will drop the
subscripts and say that the entity H is "spatially invariant”. The pixel
values are then obtained by sampling a single function. If, in addition,
the pixel grid is uniformly spaced with unit spacings, then
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P..=§(i—x,j—yo). (2-3)

ij o

By a "locale" of an entity, or quantized entity, we will mean an area, A,
consisting of all points (x,y) for which the quantized entity functions Hij
do not change. More precisely, (x',y') lie in A, if and only if

H(i - %, j-y)= H(i - x', -9 (2-4)
for all (x,y) in A and all i, j. The locales partition the plane into sets
of equivalenced positions. Each locale corresponds to an area of
uncertainty for the position of the object.

As an example, consider the spatially invariant entity H which is a
raised unit square of height aj > 1,
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H(x, y) = a, if |x| { 1/2 and |y| < 1/2,
0 otherwise. (2-5)
If the pixel centers (Xij’yi') form a unit grid, then the locales of H are
the unit square centered on %he pizxel (excluding the perimeter) and the

unusual locale consisting of the boundary of the square. The latter locale
results from the fact that, for these positions of the object, all pixels
values are zero,

It should be noted that, for a uniform square grid and a spatially invariant
entity, the partition of the plane into locales has the same spatial
periodicity as the grid.

For a quantized entity ﬁij(x,y), we define the (ordered) set-valued "image
function” I(x,y) as

I(Xs Y) = {(ﬁij(l - %, j - Y)} (2—6)

where the indicies i, j are ordered in some manner. Thus for a given
position, the image function is the ordered set of all pixel values for the
entity. Since the entity has finite support (i.e. it is greater than zero
only on a set of finite area) only a finite (and usually only a few) pixel
values are not zero. The "image distance" between two points (Xl,yl) and
(x9,79) is defined here as

” I(xy,y1) = I(xy, yy) " = ;j l ﬁij(i - %X, 3 -y

- ﬁij(i = X9, j - Yz)lc (2-7)

According to this definition, two points txl,yl) and (XZ’YZ) belong to the
same locale if and only if

T &xq5 v = T (=g, v = 0. (2-8)

vFurthermore, if the unit of quantization of pixel values is g, then if the
two points are in different locales

”I (Xl’ Yl) -1 (XZ’ Yz)“ = k.q (2-9)
for some positive integer k. Usually q is taken as unity.

In some sense each locale corresponds to a unit of available geometric
precision in that the larger the locale the greater the lack of geometric
precision. The variability of the size and shape of locales, and their
dependence upon the character of the entity makes it awkward to use locales
as a direct measure of precision. As an approach to establishing a measure
of available geometric precision in a digital image we will estimate an
upper bound on the number of locales along a unit line segment., It should
be noted that locales may span pixel boundaries and that they may be
discomnected. The size of a locale must always be less than or equal to
the size of the unit raster square since a shift by one sampling unit will
change any non-zero image function.

3. BOUND ON THE NUMBER OF LOCALES

As we move along a parametrized line segment x (t) = (x(t), y(t)), an upper
bound on the number of locale boundaries crossed is given by the total
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variation V of the image function as a function of t. For sufficiently small
changes At in the parameter t the total variation is given by

v= ) | T(x(n.at)) - I(x(n.at + Ac)) || (3-1)
n=

(where N=1/At-1 is an integer value). Consider the line segment
x(t) = (£, b) 0<t<1l (3-2)
which is a line parallel to the x—-axis along y=b, extending a single raster

unit. The total variation of the quantized image function I for a
spatially invariant entity H is

V= gIO I Tx(n.Ae)) = T(x((a + 1).Ae) |

n= -

=1y ? [H(1 - n.8e, § - b) - Hi-(n+l)eAt, § - b) |
j I n=0

.—.-z Z ]ﬁ(n.At,j - b) - ﬁ((ﬂ"’l)’At, J - b)‘
ia

= Z K (3-3)
J J

where Kj is the variation in H(x, y) along the line y = j+b.

The form of the total variation is particularly simple for entities which are
unimodal along all cross-sections. A unimodal function is simply one which
increases monotonically to a maximum value then decreases monotonically
again. The gaussian function is a good example. For such entities, the
variation along the line segment

x(t) = (t,b) 0<t<1l (3-4)
is given by
V=27 MAX {H(x, b+ D}
J X
=2 % My (3-5)
where

M. = MAX {H (x, b+j)}
] X

Since this bounds the number of locales crossed along the line segment, the
number of locales 1s bounded by Ny :

Nyo= 2 ) M.+ 1 (3-6)
3

Figure 1 illustrates the partition-of a unit square by the locales defined
by the entity function

2 . 2
H(x,y) = 4.1e” (X7 +¥%) (3-7)
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Quantization is accomplished by integer truncation. The entity function
has five levels of quantization (counting zero) and has support radius of
about 1.2, that is; it is non-zero only within a radius of 1.2 of the
origin. The image function is obtained by sampling the quantized entity
function H on the set Aj;

{(d,1) = |1 + |3]< 2} (3-8)

Explicitly, the image function is as follows:

I(XQY) = {H(X,Y), H<X+19Y)9 H(X laY)) i ’
H(x,y+1), H(x,y-l)} ' (3-9)

Along the line segment {(t,b) :1<t£<0 } the number of locales is
bounded by

=4
]

2 e (M‘1+MO+M+1)+1

(H(0, b-1) + H(O, b) + H(O, b+l)) + 1 (3-10)

The value of Ny gives us the maximum number of (distinguishable) positions
for the entity along such a unit line segment. On the average then, we can
only know the position of the object to within a distance no smaller than
/N, .

b

Using equation (3-10), for b=0.0, b=0.25, and b=0.5 the bounds are 13, 11,
and 13 respectively. The number of locales along the above line segments
is 11, 9, and 7 respectively (see figure 1). Several of the boundaries
between locales along the lines happen to be the intersection of prominent
arcs in the partition diagram. These intersections are responsible for the
numerical difference between the upper bound and the number of locales
along the line segment. For other entities, such as in figure 2 a locale
boundary may correspond to a change in the image function I(x,y) of several
units.

-The relationship (3-6) between the variation of the entity function and the
-number of locales is similar in principle to the observation by Forstner
(1982) that geometric precision in image correlation will depend upon the
variance of the first derivative. The variation is like the variance of the
first derivative in that both quantities are measures of the 'texture' of the
function. A similar principle is used by Ryan, Gray and Hunt (1980) in
defining indicators of correlation errors (see table VII of their paper).

4., DATA STORAGE CONSIDERATIONS

Large data sets consume computer resources during storage, retrieval and
computation as well as by virtue of the volume of their required storage
medium. In order to make the data handling as efficient as possible, the
'natural’ word size of the machine is often taken into account when deciding
on the number of data bits to use per pixel. We will not be constrained here
by computer architecture; we will presume that the number of pits per pixel
can be freely selected, and may be fully utilized. TFor a given number of
bits we will establish a bound on the number of locales across an entity of a
given size. If an entity is non-zero at only one sampling point, then the
summation in equation 3~6 is trivial. The bound on the number of locales V
across a unit raster square for such an entity is just

N, = 2b 4+ 1 (4-1)
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where b is the number of bits used for the pixel. It can be easily seen
that no matter what the support of the entity is (i.e., how many terms
there are in the summation of equation 3-6), the bound on the number of
locales will still vary in an exponential fashion with the number of bits
per pixel.

Now consider how the geometric precision varies with the sampling interval.
The 'standard entity' mentioned in the definition of geometric precision
(section 2) will produce a pattern of locales which will depend upon the
amplitude and spread of the Gaussian function. Since the spread of the
entity function is determined by the sampling interval, the size but not the
pattern of locales will change as the sampling interval is changed. A result
of this is that the number of locales along a straight line of fixed length
and the root mean locale area will both vary directly with the sampling
interval. Since the number of pixels in the image varies as the square of
the sampling interval, the number of locales will vary as the square root of
the number of pixels. This is a much weaker dependance than the exponential
variation with the number of bits discussed above.

Since the storage required for a digital image varies directly as the number
of bits per pixel times the number of pixels, it follows that if the number
of locales is the exclusive determinant of the available geometric precision
in a digital image then it would be most efficient to trade off a

smaller sampling interval for more bits per pixel. Resolution requirements
and noise limit this tradeoff.

5. MAXIMIZING AVATLABLE GEOMETRIC PRECISION

Once the form of the entity has been established by such factors as the shape
of the object, the aperture shape, and the response of the imaging system,
there remains the sampling frequency and quantization level to determine the
limits of geometric precision in the digital image. We will presume that the
aperture size is commensurate with the scanner sampling interval so that the
unit raster square, as determined by the sampling interval, is about the same
size as the pixel (determined by aperture size)., It is also presumed that
the quantization levels are uniformly spaced and may be fully utilized. The
presence of noise and the requirement that the object be recognizable will
jointly determine an optimal scanning interval and number of bits per pixel.

To achieve object recognition in the digital image there must be adequate
resolution. Although dynamic range and effective pixel size play a part in
determining the available resolution, the primary criteron should be that the
sampling interval be matched to the spatial extent of the object. This is
essentially a Nyquist criterion.

Once an adequate sampling interval has been established, one may address the
question of the number of bits per pixel. Apart from data volume
constraints, the determining factor is that the dynamic range must be
maximized. The dynamic range is the number of distinquishable levels of
pixel values in the presence of noise. If the range of pixel values span the
2% values provided by b bits per pixel and if the noise is within

v levels then the dynamic range D is

D = Zb/v (v>1) (5-1)
In the absence of noise (v=1), the bound on the number of locales for an

entity increases without bound as the number of pixel values increases. This
is not the case in the presence of noise. The bound on the number of locales
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then becomes a function of the dynamic range rather than the number of bits.
Once v is greater than unity it increases with the total number of pixel
values, so that increasing the number of bits will not further increase the
dynamic range.

It is interesting to note what happens if the sampling interval is made
smaller in an attempt to increase the geometric resolution. As stated
earlier, it is assumed that the aperture is commensurate with the sampling
interval. Since the scanning aperture corresponds to a spatial average, the
noise may be expected to reduce proportionally with an increase in the
aperture size. This may be incorporated into the above equation as follows:

D= (I/vg) 2°,  for I/vgy < 1 (5-2)

where T is the aperture size (or equvalently by assumption the sampling
interval) and Vg is some normalized measure of the noise. Thus a smaller
sampling interval results in a proportionally decreased dynamic range. The
bound on the number of locales along a line has been seen to vary linearly
with both an increase in dynamic range and a decrease in the sampling
interval, so no change in this bound is realized by sampling more
frequently! The limit to the sampling interval, it should be stressed, is
established by the noise level, not by the requirement of object
recognition. Once the sampling interval (and aperture size) is small enough
that noise exceeds the quantization level, further reduction in size will not
improve the bounds on geometric precision irrespective of resolution.

6. SUMMARY

As a step toward establishing definitive limits to the geometric precision
available from digital imagery, a formalism has been developed to model the
resolvable positions of detail in a digital image. The detail, or object, in
the digital image is modelled as a function or set of functions refered to as
an entity. The representation of the detail within the digital image is
obtained from quantized values of the entity, so that the entity embodies the
character of both the object and the system which produces the digital image.
It was shown that the area within a raster square may be partitioned into a
number of regions called locales with each locale corresponding to a set of
mutually indistinquishable positions for the object. The shape and size of
these locales depends strongly upon the nature of the entity. A bound on the
number of locales across a raster square is derived based on the variation of
the entity along parallel lines across its support.

An example was given which shows how this bound may be easily calculated for
a known entity, while illustrating that the number of locales may actually
fall short of the bound. The available geometric precision in a digital
image is allied to the bound on the number of locales. Based on this,
conclusions are drawn regarding data storage efficiency and limits to
geometric precision.

In terms of efficient data storage, it was shown that the available
geometric precision in a digital image of a fixed number of bits will be
improved by increasing the number of bits utilized per pixel with a
corresponding decrease in the number of pixels.

In the presence of noise of a known level it was shown that a bound exists
for the geometric information independent of the resolution or number of
bits per pixel. Provided that the aperture size is commensurate with the
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scanning interval, increased bits per pixel are "wasted” on noise without
any improvement in usable dynamic range, while a refined sampling interval
results in increased noise and no overall gain in geometric precision.
This fact underscores the importance of error and noise analysis in the
design of a digital image system.
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Figure 1: Example Pattern of Locales

A unit raster square is part%tioned into this pattern of locales for the

entity H(x,y) = 4.1 e(X +ty ). Quantization is performed by integer
truncation. Points in adjacent locales have an image distance of 1 between
them. The bound and actual number of locales crossed for 3 horizontal
lines are illustrated. The raster square boundary does not define an edge
for the locales; the pattern of curved lines is periodically repeated to
cover the plane.
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Figure 2: Example with Reduced Number of Locales

Locales are shown for the entity function H(x,y) = 3(1—]xl—lyl)- The
support of the entity contains 4 pixels. Printed within each locale is the
corresponding 4-valued image function. The circled values on the locale
boundaries are the image distances across the boundaries. Image distances
greater than 1 result in the number of locales being less than the
estimated bound. Note that pixel centers (raster grid verticies) are at
the corners of the figure. me locales are continued in neighbouring
raster squares; for example 01 is continued in the right-hand neighbouring
raster square. It is possible for locales to consist of disconnected
regions.
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