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Abstract —

Two different types of methods for updating the Cholesky factorization are
presented. The methods are compared in terms of computational efficiency and
numerical stability with each other and the Kalman filter.

0. Introduction

As far as the number of papers is concerned the Kalman filter approach seems
to have the dominating role in recursive least squares estimation also in
photogrammetry. As. e.g. Gruen /3 / has pointed out there are however many
estimation situations, where this approach is not the most appropriate one.
The present paper is concerned with alternatives. to the Kalman filter. Rather
than updating the inverse, the Cholesky factor of the coefficient matrix of
the normal equations is updated in these methods. This provides the basis

for efficient parameter and accuracy estimation.

The paper attempts to give the fundamentals of the subject. Consequently, the
main part of it is devoted to underlying mathematics and the special consider-
ations for various applications are totally omitted. In preparing the paper
the references /1 / and /4 / have served as primary source volumes.

1. Definition of the problem
Frequently, after the least squares solution of the system
v = Ax = 1, where A is mxn design matric (m>n) (1)
1 is m-vector (observations)

data is added (or deleted), which implies that the solution of the augmented
system ’
1 J

v A ﬂ
} or AU (2)

[
|| = x -
v, al iL

where a is a n-vector and z is a scalar, is required.

z

The batch solution by updating the normal equations, i.e., by forming and
solving the system

(ATA + aaT)x AT s az or AR = ATT

would approximately require the following number of multiplications
Updating of normal equations __ n2/2
Cholesky decomposition RTR = R'A n3/6

§%Iution_of triangular systems

R'y = ATT  and Ry =y n?
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Thus, the computation of the Cholesky factor takes the bulk . of the compu-
tational work. This suggest that essential savings might be obtained, if the
Cholesky factor were directly modified for new observational information.
This is, indeed, the case and the primary objective of the present paper is
to introduce efficient recursive solutions to the problem (2), which are
based on updating the Cholesky factor.

2. Agee-Turner updating method

Suppose that we are given the Cholesky facter R satisfying

I'f we denote by R the updated Cholesky factor satisfying

RR = A'A (L)
then

RTﬁT = ETA = [ATa} {A ] = ATA + aaT = RTR + aaT = RTR + caaT
T
a

where c=1 (The significance of ¢ will become evident soon)

By introducing the partitioning

r T TF P r . . I .
[r11 B N RS TRST BEEE 0 } {r11 ; r1z] al}La1 P92
=T =T b T =T f ;
LMi20 Rap ] [0 iRaa [Tip i Raal L0 TRy [y

and performing the multiplications we have

-2 2 2 (6)
rH = r” + Ca
—_— (7)
11712 T "1ty T 348,
-T - T= T T T (8)
F12712 + RogRog = Mgy + RyoRyy + casa,

From ( 6) and ( 7) we can solve
rooo= (rf 4 caz)% (3)
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Thus, the formulas for computing the first row of R have been derived.
To continue it is crucial to observe that we can write

T2 T T T =T -
RaaRag = RogRoy * Migfyg + €33, =~ rypfyy

+

T T T 7.7 T, .2
= RogRap ¥ MaaMig * €353 - (ryyryy +cayay) (ry ry, + cajay) /7y,
T T T 2 T 22 T,,.2
= RogRog * Toplyg * €353, = [y rypryy + 2ery 8,a,r,, + ¢ aja,e,) /7,
22 2 ) 2 2
I N R L R L Nl N RS A
= "% ) 12712 ) VARY) ) 292
"1 R \ "1
2 2
I AT ) 2eayry, . €Ty a7
22722 ) 12712 ) 2M12 -2 [%2%2
11 11 11
ol - 2 _ _ TT
= RaoRoy * clryy/F)" [3 = (ay/ryrpy]la, - (/e )y
By defining
¢ =c(r,  /F )2 (11)
117711
and - T '
&, =3, - lay/ry g, (12)
we finally have
T _ ol = =T (13)
R22R22 = RoaRop + 2853,

which is of the same form as (5 ) but the dimension is reduced by one. This
result implies that the updated Cholesky factor can be computed recursively
in n-1 steps. The main ingredients of the algorithm are the formulas (9 )-(12).

?y examining the formulas it is immediately seen that the data deletion case
is obtained by simply putting ¢ = -1 in the beginning.

3. Updating by using orthogonal transformations

3.1 Solution of the least squares problem by using the orthogonal decompo-
sition

A theorem of linear algebra states that for any real mxn-matrix A with
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m>n and rank (A)=n there exist an orthogonal mxm-matrix Q such that

W= (8] er A=Q[R] o

where R is an nxn upper triangular matrix with rank (R)=n. Because

ATa =[RT0T]q Q' [ R) = R'R
0

| S—

IS

and RTR = RTDTDR = R’TR', where D is a diagonal with diagonal elements +1

or -1, we observe that R of the QR decomposition and the Cholesky decompo-
sition differ, if any, by signs of the rows.

The computation of the QR decomposition is discussed in the next chapter.
In this chapter it is presented how least squares problems are solved by

using it. We start by examining the solution of the system (1) given the
QR decomposition of the design matrix A. By defining

1 = \} )
° {gj } 2 - n (15)

and recalling that the orthogonal transformation preserves the Euclidean
length of a vector we have

12 = lax - 112 =flatax - D)2 = foax - Q1 2

[Rx ; sz = ||Rx - cuz + uduz (16)

S(x) = vv = v

a1

This implies that

(1) the least squares solution, X, is obtained by solving the upper triangu-
lar system

Rx = ¢ ‘ (17)
(2) the residual sum of squares is
S(x) = 019 = |ld|)® = d'd | (18)

(3) the residual vector ¥ can, alternatively, be computed by using the
formula

V= QT[g} (19)

Note that , if desired, (18) and (19) can be computed before solving x.

The solution of the least squares problem using the orthogonal decomposition
- is numerically more accurate than the solution via normal equations, but it
requires, on the other hand, about twice as many arithmetic operations.
This is obviously the main reason why QR dzcomposition is infrequently ap-
plied to the solution of the batch least squares problem. We, however, are

interested here in the solution of the recursive least squares problem.
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Let us first consider the data addition case, i.e., the solution of the sys-

tem (2). By exploiting (16) we first have

v n2 T
S() = |v|® =[Ta]x - I = = P+ T - ]
B
]LaJ ‘.Z
= flrx = el [l 4 faTx - 2f? - ;’R} Hp v (20)
' g:i_aT z]|
Referring to (14 we now assume that
Q{R)T"é’; , (21)
FUNNES
where R is an nxn upper triangular matrix and define
Qic]= { } (22)
2] el |
Then we can reduce (20) to the form
sGo =1l R x - (€] 2 gl = 1R - 22+ fall? + o) ? (23)
Lol L)
The updated least squares estimate thus satisfies the equation
Rx = ¢ (24)
and the corresponding residual sum of squares is
la* + lel® = T+ eTe (25)
By introducing the imaginary unit 12 = -1 very similar derivation for the
data (row)deletion case results.
| 2 |
S(x) = HAX - IH - NaTx - z||¢ = l|Rx - c“z + Hd“z - Ha x - 2“2
=£F Rx '”51“2 + Hd“z = [R ?x -[} FE + Hd”2 = ”{ﬁ}x -lc ?TF+ Hdﬁz
i { il i Pl
ilia'x - z)| iaT] izl ol Liel]
- -1 i il | !
ot R T B R P L
ie U (26)
L i

I't should be emphasized that the algorithms for the two cases differs only

by signs of some quantities from each other.
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Summing up the results of the present chapter we observe that the sequential
processing of this type essentially involves the reduction of the certain
augmented matrix to triangular form by orthogonal transformation, that is,
the key operation can be expressed as

Q ;R c| = {ﬁ 51

LT |
ra oz .0 e |

IS .

(28)

It remains now to construct the required orthogonal matrix. In the construc-
tion we explicitly take into consideration the special structure of the
matrix to be reduced.

3.2 Construction of the Householder and Givens transformations

r 7
Denote T = [t] ty .. tn+1] = ;RT c! (29)
2z}
and note that the columns tj are of the special form
T L
t. = 1t.{1), t.(2), ... t.(j), 0, ...,0, t.(n+1 ] 0
i= Mm@, ;) 5(ns1) (30)
If we define
5 - +, if tj(j)<0 %)
= : z =
s o(tj(J) + tj(n+}) )?, where o {_]’ i tj(j) s 0
uJ.(i),=o e I
u.(j) = t.(j) - s
J<J) J(J)
u(0) =t (i), 0= j+1, ... n+l (31)
J J
Q. =1 -2 T
] n+1 uTu ujuj (Orthogonal for any u # G )
]
then by observing that
. . T
2 T )
Qt = Q - = uu ) t =t -2 uTt U=t = vyu (32)
uu uu
it is easily verified that
. _ . T
(I) Qth = [t_}(])’ tj(z):-’-ytj(J 1)9 S, 09'-')0}

(:. Last element is zeroed)
(ii)
~ . : . , T
o=t (1), 6.(2) e, e (- (j)-yu. -Yt. i i
QJ " [ J( ) tJ(Z) tJ(J 1),tJ(J) YUJ(J),O,...,O,tj(n+1) Ytj(n+iﬂ Jif k>

(:. Only the j“h and (n+1)th element are changed. The structure of
the vector £ does not alter)
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(iii) Qj(thk) = thk’ if k<)

(:.. The columns already '‘zerced" remain unchanged in subsequent trans-
formations)

Based on properties (i) - (iii) and the observation that

.
QJT Qj[tl’ t2"'°’tn+1] LQJtl’ QJtZ ] R+l
it is obvious that the (n+1)x(n+1) matrix T can be reduced to upper triangu-
lar form by n successive transformations, that is,

QR c]_[Re] (33)
0

|
i

where Q = Q_Q -1

The transformation defined in (31) is called the elementary Householder
transformation. An alternative is the Givens transformation, whose construc-
tion is now briefly discussed.

Let t} be the same as in (30). If we define

tj(j) tj(n+1)
T et D T D e
t. ] + t.{n+1 t. + t.(n+]
( J J) J : J J J
r 7
Ll 0 0 0 | (34)
J_‘l H
0 c 0 S
Q. = |
J o 0 1 . 0|
n-j-1 i
_O -s 0 cj

then it can be verified by simple calculations that the properties (i) -
(iij)also hold for the Givens transformation matrix defined in (34). Hence,
the (n+1)x(n+1)- matrix T can alternatively be reduced to upper triangular
form by n successive Givens transformations Qj (j=1,..., n)

From the computational point of view it is of crucial importance to observe
that whether the reduction is based on the Householder or Givens transform-
ation the explicit computation of the transformation matrix is not needed
for th: solution of the least squares problem. Rather we exploit directly

the given properties of the matrix-vector-product of these transformations in
the construction of algorithms.

k. Discussion of the presented methods

Conserning all the updating methods presented above the introduction of
weights is straightforward: the vector aj and the scalar z; are simply
multiplied by VET‘ before processing, where pi is the weight of the obser-
vation z;. In contrast, the treatment of 3 group of correlated observations
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is much more involved: corresponding design matrix and observation vector
must then be multiplied by the Cholesky factor of the weight matrix /2 /.

The computational efficiency of the methods depends of course to some extent
on algorithmic details, but the numbers of arithmetic operations given below
are anyway typical. The numbers refer to the updating of the nxn Cholesky
factor only.

Method Additions Multiplications Divisions Square roots

Agee-Turner n2 2n2 2n ‘ n
Givens n2 2n2 2n n
Householder 2n2 5n2/2 n n

Recalling that the computation of the Cholesky factorization requires e.g.
about n3/6 multiplications we find that an order of magnitude fewer oper-
ations are required when the updating algorithms are used. On the other
hand, there are only minor differences between the three algorithms.

With reference to the Householder algorithm additional computational savings
are attained, if more than one observation equation is processed at the same
time. For p observationswe have the following table.

Processing Additions Multiplications Divisions Square roots
2 2

one by one 2pn Spn/2 pn . pn

simultaneously (pﬂ)n2 (p+3/2)n2 n n

The examination of (31) gives easily the modifications required for pro-
cessing several observations simultaneously.

Because the solution of two triangular systems also requires about n
multiplications we observe that the total number of multiplications for the
new estimate is of the order of n?2 only, that is, of the same order as with
the Kalman filter.

With regard to numerical accuracy, consideration should be paid to the
following aspects / 1, L /:
- Orthogonal transformations are well-known for their favourable numerical
properties. Moreover, the recursive algorithms being based on them oper-
ate directly on design matrix A, the condition number of which is the

square root of the condition number of A A. These algorithms should,
therefore, be preferred in poorly conditioned problems.

- The deletion of data can be an inherently unstable operation. This is
seen immediately e.g. from {9), where if the numbers are close in magni-
tude digit cancellation occurs in subtraction.

- Compared with the Kalman filter the methods presented above are expected
to give significantly more reliable solutions.

Finally, it is easy to show /2/, that Q of (28) transforms(RT).1 to (ﬁT)_],
i.e. the inverse (Rl)_} can be updated simultaneously with R. By means of

R™' we can further compute the inverse of ATA, for (AT5)~]= ﬁ-](ﬁT)_]'
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5. Addition or removal of parameters

The change in the number of observation equations frequently results in the
change in the number of parameters too. We discuss in this chapter, how
Cholesky factor is modified in such a case,

Let us first consider the addition of a parameter. The design matrix is then
of the form :

A = [A b] , where b is the added colums (35)
I f
R = [R , where F is a n-vector and
i 0 « a is a scalar (36)

is the corresponding Cholesky factor we have

Rl =A'a
or

- - - r

T o“R - | %AT (A 5]

N -

Toalo af b7 Bt
or )

RTR R'E ATA ATb}

_;Tﬁ FTF+32 LbTA bTb‘
Thus,

R'R = A'A =R'R

R': = A'b

o = b'b-FF (38)

i.e., the solution of a triangular system is essentially required (number of
multiplications is proportional to n<.

The derivation for the parameter removal case is rather similar.

Le us write the mxn design matrix A in the partioned form

A=[A A, A | (39)
where A represents the k* th column of A to be removed. After removing we thus
Have mx% ) design matrix

A=l A e

Ry A (40)

If R and R are the correspending Cholesky factors, that is,

R'R =A'A  and  R'R = ATa” (81)
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and they are partitioned corresponding to (39) and (40) as

{R11 Ri2 Ris 1

R=10 Ryy Ryq } and R =

(
| _
{0 0 Ry J : L 0 Rya |

we find by expanding (41) and (42) and examining resulting expressions that

(43)

Riv = Ry

- (44)
Riz = Ry3

T - T T -

RaaRop = Ajhz = Ri,R,

Thus, instead of the factorization of the (n-1)x(n-1)- matrix, the factoris-
ation of the (n-k)x(n-k)= matrix is required. The reduction in computational
effort of course depends crucially on how close k is to n.

The modifications on the right-hand side for adding or removing a parameter
are obvious and are therefore omitted here.
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