513

DTM - DISPLAYED PERSPECTIVELY
Helmut Kager

Institute of Photogrammetry
Technical University of Vienna
Austria

Commission III

ABSTRACT

Thinking of graphical representation of digital terrain models one associates
involuntarily: contour lines.

Despite of this, some DTM-users prefer to view their DIM so as they are used
to see the original terrain - namely from a point of view chosen arbitrarily.
This results in a perspective. This form of display seems to be useful e. g.
for visual quality control in generating DTMs or in traffic design.
Stereopairs may be of advantage too.

In this paper an algorithm is proposed which allows the perspective imaging
of a DTM structured as raster-points (with break-lines in case) as delivered
from the SCOP-program. Inner and outer orientation of the images is completely
arbitary. Invisible (hidden) lines are displayed only on special request.

ZUSAMMENFASSUNG

Wenn man an die graphische Darstellung digitaler Gel&ndemodelle denkt, asso-
ziiert man unwillkiirlich: HShenlinienkartierung.

Jedoch wiinschen sich manche DTM-Benutzer das DTM so zu sehen, wie sie es vom
urspringlichen Geldnde gewohnt sind, n&mlich von einem beliebig wihlbaren
Standpunkt aus - also als Perspektive. Niitzlich erscheint diese Darstellungs-
form z.B. flr die Qualit&dtskontrolle bei der Generierung des DTM oder fiir die
Projektierung von Verkehrswegen etc.

Auch Stereoperspektiven kénnen von Nutzen sein.

In diesem Aufsatz wird ein Algorithmus vorgeschlagen, der es erlaubt, ein
rasterformiges DTM (gegebenenfalls mit Bruchlinien) - wie es z.B. von SCOP
erzeugt wird - bei beliebiger innerer und HuBerer Orientierung des Bildes ab-
zubilden. Unsichtbare Linien werden dabei nur auf Wunsch dargestellt.

1. INTRODUCTION

At first a question: What means hiding ?
The geometrical answer could be: One object hides another object if the first
one ts nearer on the same visual path.

Since a visual path is a straight line this definition implies a three dimen-
sional formulation (collinearity equations) of the problem at first. Given
some objects, we could test any two of them to see if they lie on the same
halfray ending in our projection center. If they do, we test, which of the
two objects is nearer: it hides the other. If not, they can't hide each
other.

But for numerous objects - as may be supposed handling a DTM - comparing all
pairs of objects would result in a vast amount of computation.

Let us consider another question: What exactly are these objects we just spoke

514

about ?

In the physical world, any non-transparent body could be such an object. A
DTM belongs to the computational world and consists only of a set of numbers
representing elevations above a regular grid. But this (fig. 1) appears to be
very transparent.

MNAEEIRIN
44%

Fig. 1: DIM as elevation matrix
2. ELEMENTARY OBJECTS

If we connect immediately neighboured points we get a structure like a
fisher's net (for simplicity we choose these connections as straight lines).
It is transparent too, yet one might already imagine the surface as a sus-
pended net.

P

/ ‘7//7

e

/
ad

Fig. 2: DIM as suspended net

Now we could f£ill the meshes with opaque material. Since the four corners of
a mesh aren't in a plane, the formuluation would become difficult. So we take
another way. Onto each mesh side in the groundplan we put something like a
firescreen: vertical trapezia, the upper edge coinciding with the fisher's
net.

Now we have the objects questioned about: opaque trapezia,the upper edge only
visible. These objects promise easy handling, well knowing they are only an
approximation of a curved terrain surface.

In the moment we put one screen element into its place, we want to decide
about its visibility. Fig. 3 shows a DTM partially set up with screen elements.

It gives rise to the next question: Are there rules concerning the sequence
of setting up the screen ?

515

Fig. 3: Incomplete fire screen DTM
3. CONSTRUCTION OF THE OBJECT

If we put up only such screen elements which can't be hidden (partially or
totally) by others, we don't have to care about comparisons between pairs of
elements when considered as randomly distributed objects! The regular struc-
ture of ouwr DTM grid does allow this.

Fig. 3 shows: Screen element X12 could hide screen element Y12 or X22 ;
therefore X12 must be set up earlier than Y12 and X22 . More general:
X1j elements can hide X2j elements; X2 elements may hide X3j elements
and. so on. A similar rule is valid for the Yij elements. So we can deduce
priority rules based on grid-indices rather than on euklidean distances. A
three-dimensional problem is reduced to two dimensions therewith.

But a threatening question occurs: What is the role played by the viewing
point? The rules of hiding indicated above aren't general. From a viewing
point far in the background of fig. 3, we see: X1j screen elements may be
hidden by X2j elements, and so on. The Xij - rule is just reversed. The
general rule for setting up screen elements may be seen in fig. 4, which is
a groundplan of fig. 3: the viewing point PO is chosen in mesh (2,2)

= = =z ==

[y N (3%} B~ o
i=4 ’ cee X43j
i=3 - cee X33
i=2 o ' S X2
i= S+ X1

Fig. 4: Groundplan of the incomplete DIM shown in fig. 3

elements but

X3j - elements precede X4j
X23 =~ elements precede X1j elements
Yi3 - elements precede Yil4 - elements & Yi5 - elements
Yi2 - elements precede Yil - elements

516

So we may formulate the hiding rule for screen elements:

Xij - elements precede Xkj - elements if 1 1is nearer to Kk
Yij - elements precede Yil - elements if J is nearer to 1

In a program, index loops should start near the projection center and run
away using positive increments for positive coordinate direction, negative in-
crements for negative direction. So each quadrant (referred to the projection
centre as origin) is characterized by its own increment pair.

But: How do screen elements of different direction intervene?

Unfortunately Xij - elements and Yij - elements aren't independent.

If we want to display only profilelines our rules are sufficient, we may dis-
regard the complementary screen set. For displaying both grid directions, we
have to choose one direction as dominant, the other as subordinate, corres-
ponding to the nesting of index loops. So we scan one quadrant of the grid.
We put onto each grid point a pair of screen elements as fig. 5 shows:

-
¥

first pair second pair next pair Tast pair

Fig. &: Setting up pairs of screen elements
in the first quadrant .

We see: no member of any pair can obscure his partner, no pair can be hidden
by a later one,

We céntinue with the 2nd Quadrant:

v

first pair ‘second pair next pair last pair

Fig. 6: Setting up pairs of screen elements
in the second quadrant

And so on:
A r. h
o o) o e e o
first pair second pair next pair last pair

Fig. 7: Setting up pairs of screen elements
in the third quadrant '

517

] [|]

\
first pair second pair next pair last pair

Fig. 8: Setting up pairs of screen elements
in the fourth quadrant

When we look at the arrows, we see that they all obey the same rotation (from
left to right) with respect to the viewing point. We will use this feature
later. :

Now we have filled the whole DTM with screen elements. Unnecessary doubles
are contained merely in the mesh-strips starting from the viewing point
following the four directions of wind. No problems will arise if we handle
this special case when initializing our index loops.

As we have stated earlier, we don't want to compare individual screen ele-
ments with one another. The following question becomes so more and more
pressing: When putting up any one of the screen elements, what really is its
counterpart deciding its visibility?

4, THE HORIZON

For this purpose we use the perspective image of the highest contour of all
screen elements already set up. This contour serves as horizon: It hides
lower objects, but an object appearing higher modifies its shape (fig. 9).

This horizon will be called %iding polygon later on.

What happens when we set up a pair of screen elements?

At first normalized image coordinates of the upper two corners of the element
are computed. Then this unique polygon side is searched for, the starting
point belongs to. It is found, if this point is projected exactly above or
beneath this side. Since the edges of screen elements appear to run from left
to right the hiding polygon is then followed to the right too, until the
image of this edge crosses the polygon or it ends. An intersection point is
inserted into the hiding polygon as soon as it occurs. Points of the polygon
bypassed beneath the edge are discarded from the hiding polygon. The point
ending the edge ist inserted if it lies above the polygon. The hiding polygon
requires therefore a highly dynamical data structure to ensure efficient be-
haviour of the whole algorithm. The second member of the screen pair is hand-
led similarly. It should be noted, that there may occur only an even number
of intersections when setting up one screen pair.

The screen edges respectively that parts of screen edges, which appear above
the hiding polygon are output to a graphic device or written to a file as
visible DTM: The normalized image coordinates are transformed into a ficti-
tious user-camera, defined by inmer orientation. This allows different inner-
orientations for different - simultaneously serviced - graphic output devices.
The complementary parts may be output too, but marked as invisible (e.g. as
dashed line).

518

before updating: > after updating:
horizon @2fEEff_\\\—_______//’—_—_““
-3
screen—
element
horizon ———————‘~\¢/////
-> /_
screen—
element : will be completed handling
the second member of the pair
horizon

W———————-\/\/“‘

screen~

element
horizon
— M
gereenl
horizo

- - ‘\\\\\\\“‘x\

Fig. 9: Some situations updating the horizon

screenl ..2;

Repeating this process for all points with all screens we gain an image of the
DTM in a central perspective (fig. 10).)

5. WHAT PARAMETERS ARE USED TO CONTROL THE IMAGE °?

We have already mentioned the projection centre in its important role as star-
ting point scanning the DTM-grid. The attitude of the.image plane is deter-
mined by a rotation matrix defined using tree angles - as perceptual as
possible - or defined with the coordinates of its axes. The vanishing plane

(a plane parallel to the image plane through the projection centre) may dissect
the DTM: the part behind it, is never visible. Beyond that, the image's atti-
tude influences our hiding polygon, even left and right, up and down may be
changed (rotation around the optical axis by 7). But no problems arise, using
vector algebra strictly (see appendix).

The inner orientation is completely arbitrary, using normalized coordinates
throughout the algorithm. Only for outputting the image vectors,they are de-
normalized according to the data of interior orientation. At this stage the
image vectors may be clipped to an rectangular image field so far as the algo-
rithm hasn't done this, caused by sophisticated initialization of the hiding-
polygon.

4

ANN

FEK

X
OOAR
YRR

S
AWy

LAY
'\

L\

y
v

‘ i
Fig. 10: Central Perspective of a DIM in Raster-structure
(photogrammetric data acquisition: Landesvermessungsamt Stuttgart,
computation with SCOP: Institut fir Photogrammetrie Uni Stuttgart)

520

6. DTM STRUCTURE
Are there limits in the extension of the DTM?

A whole DTM can scarcely be stored in the main memory of a computer. The index
loops scanning the DTM run into all wind directions, therefore not allowing
sequential precessing. To minimize I/0 we need an organisation of the DTM
using random access. The SCOP-DTM is built up of so called computing units,
shortly CU's, representing - simplified - relatively small submatrices of the
whole DTM-grid. So handy data portions can be transferred.

Further more - implied by this structure - many computing units don't need to
be read, since knowing the extremal heights of the DTM, they can be skipped
immediately.

After reading a computing unit, a similar test is done using its extremal
elevations. So some more CU's may be eliminated before checking visibility in
detail.

In what way are the index loops affected by the DTM-structure?

If we let the index loops run up to the DTM border, we had to read many CU's
again, as soon as processing the neighboured gridline. This isn't necessary
anyway. CU's - taken as an unit - follow the same hiding rules as our screens.
So we get further nesting levels for index loops applied to CU's. The index
loops discussed earlier are limited to the CU-boundaries.

Empty CU's may be handled too, as fig. 11 shows.

\1

2=

R
Pt

A\
\W

o
o %

NN
N

Fig. 11: Central Perspective of a DIM where Computing Units are missing
(photogrammetric data acquisition: Consulting Enginecer A. Legat,
Letbnitsz, Austria, computation with SCOP: Institute for Photo-
grammetry TU Wienna)

521

7. CONCLUDING REMARKS

The algorithm proposed was implemented in FORTRAN 4. It runs as part of the
program system SCOP (Stuttgart Contour Program). It may be used also as stand
alone program, provided that the DTM is organized in raster form. A sequential
DTM may be converted to random format, using a special conversion program.

The SCOP-DTM contains some other valuable information too - as breaklines and
borderlines. The next step in further development of the algorithm proposed,

will be the inclusion of these informations. The concept of screen elements
changing the horizon will be suitable too. The changing density of lines might
cause difficulties for graphical presentation.

It should be noted, that the algorithm works very efficient, since each com-
puting unit of the DTM needs to be read only once at the worst. So it is best
suited for quality control during the process of DTM-generation.

It can be run interactively too, so supporting the design phase in road-
building.

APPENDIX
The mathematical tools used:

perspective transformation:

>s-.>s = k"f‘ £ =X
| L
L_inner- [_ projection center
orientation object point
rotational matrix
image- poeint scale
point

normalized image coordinates (x, y):

x X - X
v = A R Y - YO
1 Z - 7

o}

user's image coordinates (x, y):

X - % ® X
e} by _ _
y—yo _-X- y = H y
- C 1 1

A point (A) and its interval (CD) on the horizon (i. e. the

hiding polygon)

c b
N ;
N 7

» %

Vz: Direction to the vanishing point of all plumblines

A lies between TD:

X % = X %, =
c a 7 a d v
Vo Y4 Yy || 20 and Ve Yq Yol >0
1 1 9z 1 1 oz
v v

v g >0
yc yd ya

522

