A SUBSTITUTE MATRIX FOR PHOTOGRAMMETRICALLY
DETERMINED POINT FIELDS

T. Bouloucos
D. Karadaidis
M. Molenaar
_ITC, Enschede, The Netherlands
Commission III

1. INTRODUCTION

The precision of a geodetically or photogrammetrically determined
point field is usually presented by the covariance matrix of the
coordinates of the points. It can be stated that this matrix is
never produced in photogrammetric point deteremination methods.

Of course this is understandable because the production of such a
matrix will require the manipulation i.e., inversions and multipli-
cations of matrices of very large order and will necessitate tremen-
dous storage requirements.

On the other hand this covariance matrix is needed

- when new measurements are available e.g., angles, distances, etc.
which are used in a second step of an adjustment in phases for the
production of the final result

- 1in the densification of an existing network, for assessing the
precision and reliability of the new coordinates and for the test-
ing of the given points

- especially nowadays when point fields of different levels of pre-
cision are integrated in data base systems.

The problem can be circumvented by describing the precision of a

point field by an artificial covariance matrix, a matrix which will

be generated and used when needed, as a "substitute matrix" [12].

Thus, the substitute matrix should have the following properties.

a. It should represent the precision of the point field as good as
possible, in comparison with the real matrix.

b. It should be easy to generate, with minimum storage require-
ments.

In this paper a search for a substitute matrix is carried out for
photogrammetrically determined point fields.

2. THEORETICAL CONSIDERATIONS

The above two properties, which the substitute matrix should pos-

sess, give rise to the following questions: :

- how can a substitute matrix, from now on called the H matrix, be
generated?

- what criteria should be used for the comparison of the H matrix
with the real one, which from now on will be called the G matrix?
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2.1. The substitute matrix, S-transformations

The generation of a substitute matrix is based on the ideas of Baar-
da [2], for the construction of an artificial covariance matrix,
which is also called the criterion matrix.

Baarda's criterion matrix for a planimetric point field, describes
desirable properties of precision i.e., it gives circular point and
relative standard ellipses, whereas variances of distance ratios and
angles are only dependent on the shape and size of the triangles
from which they are taken and not on the actual position of the
triangle in the point field.

In a fictituous coordinate system, i.e., no S-base has been speci-
fied in the sense of [2], the submatrix pertaining to the points i, j
has the form.

e 3 Yi x5 X5
x4 a? o a%-dai; , %,
vy 0, a2 0" at-afy (2.1.1)
xs | a%- a2, 0 d 0
3 i3 2 "2 2
Y3 0 a%- af 0 d

With an anologous extension to an arbitrary number of points where,
d is a paramater; the radius of the circular point standard ellip~-
ses.

dzij is a monotonic non decreasing function of the distance
1ij between the points 1i,j. This function will further be called
the "choice function”.

If two points of the point field = these two points will be called
the S-base [2] - are kept fixed, i.e., a coordinate system is intro-
duced, then the precision of the coordiantes of the points with
respect to the S-base can be expressed, by transforming the previ-
ously defined matrix by the use of a S=transformation, a differen-
tial similarity transformation. An extensive theory of S-transforma-
tions can be found in [2], [10], [11].

An S-transformation applies to the matrix defined in (2.1.1.) re-
sults in the elimination of the parameter d [2]. The substitute
matrix is thus completely defined by the function dzi-.

It should be clear, however, that the transformed matrix expresses
the precision of the point field with respect to the chosen S-base.
It is therefore obvious that the comparison of the two covariance
matrices can only be made after the two matrices have been transfor-
med to the same S-base.

2.1.1. The choice functions

For the generation of the substitute matrix three choice functions
dzij have been considered.

1. Linear choice function

2 - 42

60°




61

This function is extensively used in the Netherlands for the genera-
Eiin of a criterion covariance matrix for geodetic point fields [1],
2 ®

2. Logarithmic choice function

Py

1
afy=sa®+ctcy1n 1 +ghl) (2.1.3)

The function (without the term Ad2) has been proposed in [3) as a
covariance function for the use in geodetic networks.

3. Exponential choice function

dﬁj = 2d? + ¢ (1-exp(-c§11§)) (2.1.4)

Similar functions are used as covariance functions, mostly in DEM,
in connection with linear least squares filtering and prediction
[13] where:

C1, Cyg are parameters of the choice functions, the values of
- which are sought through an experimental process.

135 is the distance between points i, j.

Ad? is a parameter which has been introduced to express the uncer-
tainty of the point definition [2], i.e., the transition from a
physical point to a mathematical point. In the experiments, if not
otherwise stated, its value has been taken as 10 cm?. This choice is
related to the measuring precision of model coordinates and the
average local redundance [Sf)of tie points.

2.2. Criteria for comparison

It seems to be reasonable to assume, in the sense of an S-system,
that the variance of any function F of coordinates calculated using
the real covariance matrix G, is smaller or equal to the variance of
the function, calculated using the substitute matrix H.

This leads to

G ¢l

OFF FF
or

AGA* < AHA*

where ,
A is row vector, with the coefficients of the linearized form of F.
* indicates transposition.

We may also write
A(G-H)A* < O

?eieby requiring the matrix (G-H), to be negative semi-definite
2. ,

This is fulfilled if:




{)‘}max <1
where

{X}max is the maximum eigen value of the general eigen value

problem
det[G-)H| = 0

In our case the upper bound of {l}max

{Algax = 1 (2.2.1)

will be used as a first criterion.

fuithef,]the two matrices G and H can be diagonalized simultaneously
2. 6| - S : '

V*HV = T (2.2.2)
V*GV = D
where

V is the matrix formed by the eigen vectors of the general eigen
value problem det|G-AH|= O.

D is a diagonal matrix with the eigenvalues of the same eigen value
problem as diagonal elements.

I is the unit matrix.

With the transformation in (2.2.2.) the standard hyperellipsoid
belonging to the covariance matrix H, becomes a hypersphere with
radius equal to 1, whilst the hyperellipsoid belonging to the covar=-
iance matrix G becomes one with semi-axes equal to the square root
of the eigen values.

With the condition {A}max = 1, the situation is depicted in fig. 1.

_-.standard hypersphere belonging to H

-
-

“--standard hyperellipsoid belonging to G

Figure 1

By changing the values of the parameters of the choice function, the
matrix H changes and therefore the results of the eigen value pro-
blem change.

The shapes of the two hyperellipsoids will agree better with each
other as the ratios of the eigen values approach 1.

Therefore a possible criterion of "fit" could be

Al max

as small as possible, approaching 1 (2.2.3)
{A} min




This is the second criterion used.

In terms of variances this criterion means:

H G H
{k}min OFF < CFF < {X}max OFrF

Note: The general eigen value problem is invariant with respect to a
non-singular transformation. In view of the fact that the comparison
of the two matrices should be made after a transformation to the
same S-base, it is obvious that the choice of the S-base is not
important for the comparison.

3. EXPERIMENTS

A series of experiments have been carried out with simulated plani-

metric model blocks [8].

For each experiment the covariance matrix of the point field is
produced through the adjustment algorithm. ,

Also a substitute matrix for the point field is generated.

The two matrices are transformed into the same S-base, and compared
using the results of the general eigen value problem.

The parameter values of the choice functions which generate the best
substitute matrix, according to the criteria formed in paragraph 2,
were obtained by successive trials.

The following block configurations with the indicated control dis-
tributions were treated:

Al: A2: A3:
7 ? &
& a
AL L A & it 4 & —d
B1: o B2: o
. A
C1: N C2: .
I 1 I l 1 T s=zcontrol point
Figure 2

For each model of the above blocks the following cases were consi-
dered.

« four single tie points (4 corners)

. four double tie points

- six single tie points (6 standard positions)

. 8ix double tie points
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Also the case where an extra point is added in the center of the
model was investigated. This point does not participate in the ad-
justment. It can be considered as a detail point (cadastral) point,
a situation usually encountered in photogrammetry.

The following stochastic models were considered for the observa-
tions.

For the model points:

- equal precision of 10 cm on the ground for x and y coordinates
with no correlation between them. These will be referred to as
uncorrelated model points.

- a full covariance matrix is used for model points. The determina-
tion of this matrix is based on the work of Ligterink [9], taking
only the observational errors into account. These errors originate
from inner orientation, relative orientation and from the measure-
ments of model coordiantes. The measured points are considered to
be signalized. These will be referred to as correlated model
points.

The latter could be a better model than the former, but it should
still be considered with care, since correlation between models is
not taken into account [4]. ¢

Ground control points

= not stochastic

= equal precision of 5 cm for the x and y coordinates, and no corre-
lation between them.

The generated independent models have 207 side overlap and 60% for-
ward overlap. The scale of the photography has been assumed to be
1:10,000 and the principal distance to be 152 mm.

3.1. Analysis of the results

The values of the parameters of the choice functions which generate
the best substitute matrices are summarized in tables I and II. The
ground control is not stochastic.

The first vertical column in these tables refers to the type of
choice function used. The second column refers to the block configu-
ration e.g., Al, A2, etc. (see also fig. 2).

The first horizontal line indicates the tie point configuration.

The second line indicates the parameters of the choice functions.

In all the cases {A}max = 1.

From these tables the following conclusions can be drawn:

- the exponential and logarithmic choice functions give comparable
results, with the logarithmic function slightly better in most of
the cases. The linear choice function gives very large values for
the ratio {A}pax/{A}lpin-

- when double points are used, the ratio {Alpax/{Almin
becomes smaller compared with the corresponding cases of single
points. Further, the ratio increases with a decrease in the number
of control points in the block (relaxed control).

- when six points per model are used, the ratio becomes larger com-
pared to the ratio of the corresponding cases with four points per
model. This may be caused by the non homogeneity in the
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precision of the point field (some points appear in four models,
others in only two)

- 1n the case of correlated model points, the ratio
{A}max/{k}min is larger compared to the ratio of the
corresponding cases, where no correlation is considered.

When the ground control points are considered as stochastic, no
substantial changes in the ratio {A]lyax/{A}pin, 1s obser-
ved (see [8]).

Also, in the cases of blocks with single points in the models, the
ratio {Alpax/{Alpin becomes larger due to the fact that
the non homogeneity in the precision of the point field increases.

3.2. Partial point fields

In these series of experiments, the objective was to investigate
whether the parameters found for the substitute matrix for the whole
point field, can be used for the generation of a substitute matrix
for parts of the point field.

The results in 8] reveal that in the case of homogeneous point
fields (full perimeter control, four points per model), the exponen-
tial choice function seems to be the most adequate for the genera-
tion of a substitute matrix for the partial point fields.

However, in all the other cases the matrices generated for the part-
ial point fields' are suitable as an upper bound for precision,
since, {X}max is always smaller than 1. ~

When the single points in the models (cadastral points) were treated
as partial point fields, it was clear that they belong to another
level of precision and therefore other values for the parameters
have to be found.

3.3. Consistency

If we allow a small increase in the ratio {Alpax/{Almin»
the parameter values for the exponential choice function shows a
consistency which was not observed for the parameters of the loga-
rithmic choice function.

The increase in the ratio was never larger than 5% of the values
given in the tables I and II. '

The parameter C; assumes a value equal to 0.9 when four single or
double tie points are used, and a value 1.1 when six single or doub-
le points are used, inrespective of the control distribution used.
In the case of a block with full perimeter control the values of
C1, of the exponential function, are:

uncorrelated correlated
four single points/model 95 60
four double " 85 55
six single " 130 45
six double " 120 40

The fact that C; has smaller values in the cases where double
points are used (more precise point fields) show that this parameter
plays the role of a scale factor in the exponential choice func-
tion.
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Some further experiments with the exponential function showed that
changing the scale’ of photography affects the ratio
{A}max/{k}min' This can be compensated if the parameter
C2 1is divided by the ratio of the scale numbers. Also, the effect
of changing the precision of the observations is compensated by
multiplying the parameter C; by the ratio of the assumed varian-
ces. :

4. GENERAL REMARKS

2

- the 1linear choice function gives considerably worse results as
compared with the other two functions. Its use in photogrammetry
can not be recommended.

- the logarithmic and exponential choice funétions can be used to
generate a substitute matrix for photogrammetrically determined
point fields.

- the parameters of the exponential choice function have some very
specific properties namely:

- The parameter C; causes a scaling effect and its values are
related to the precision of the block. -

The parameter Cj controls the ratio {Alpax/{Alnin
i.e., how adequately the substitute matrix replaces the real cova-
riance matrix. Its value depends only upon the tie point configu-
ration (four or six points per model).

Also, the effect of a change in the scale of photography or in the
precision of the photogrammetric measurements can be dealt with.
All these facts suggest that the exponential choice function is
the most suitable to be used for the generation of a substitute
matrix for photogrammetrically determined point fields.

Further investigations are to be carried out with the exponential
choice function, which may lead to show the interrelationship of the
parameter C) with the spacing of the control points.

Also, the role of the parameter Ad? will be analyzed with respect to
the type of points and the local redundancy [5].

In the near future, similar investigations will be carried out to
investigate the height precision of photogrammetrically determined
point fields.,
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