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ABSTRACT

This paper deals with the effect of the quality of terrestrial networks on
the result of the adjustment of aerotriangulation blocks. Examples using a
planimetric independent model block and different planimetric terrestrial
networks show how the precision of terrestrial coordinates propagates to
the precision of the final block coordinates. Furthermore, it is shown
what effect an incorrect assumption for the precision of ground coordinates
may have on the evaluation of the precision of the total system. Attention
is also given to the effect of the reliability of ground control on the
reliability of the final block coordinates. It is shown how undetected
errors in the terrestrial network propagate to the block coordinates, and
how these effects can be reduced by choosing better network structures.

1 INTRODUCTION

When looking through the literature on aerotriangulation published over the
past 20 years, it is astonishing how little attention photogrammetrists
have paid to the quality of ground control. In publications from the
1960s, we find directives for where ground control points should be fixed
in a block and how dense this control should be (e.g., [1] and [7]). These
directives, however, are based entirely on the analysis of the resulting
precision of the aerotriangulation block, assuming that the given ground
control 1is error-free and not stochastic. These directives were easily
accepted by people working in applied photogrammetry because they were
simple, i.e., control points for planimetry at the perimeter of the block
plus several chains of height control points over the block. It was
commonly accepted that the land surveyor could easily obtain a precision
for coordinates superior to what photogrammetry could do. This was
correct=--but experience shows that superior precision does not mean that
ground control is without errors.

In 1966, Ackermann [l] showed how difficult it is to detect errors in
ground control in photogrammetric blocks. It was only at the end of the
1970s, however, that reliability parameters were used as criteria for the
quality of geodetic networks--for which the basic theory had been published
in the 1960s. Photogrammetrists used reliability studies to check and
improve the quality of their own product, i.e., photogrammetric block
coordinates. Eventually, they investigated the possibility of testing for
errors in given ground control points (e.g., [6]), but the technique was
not used for the formulation of criteria which should be satisfied by
ground control. Nor did the increased precision of photogrammetric blocks
lead to more detailed formulation of specifications for ground control.

Examples will therefore be given in this paper to demonstrate what kind of
problems occur when networks are designed to supply ground control for
aerotriangulation blocks and why photogrammetrists and 1land surveyors
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should get together to design an integrated point determination system.
Some of the computation results presented here have been taken from the MSc

thesis of J B Jorgensen

photogrammetry at ITC in July 1980.

[8], for which he was awarded an MSc degree in

2 DATA AND COMPUTING METHODS USED IN THE EXAMPLES

2.1 Data

One planimetric independent model block and two networks will be used in
The block consists of three strips with six models each

the examples. _
Every model has four tle points, one in each corner.

(Figure 1).
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The size of each model is 1000 m by
2000 m in terrain scale and the
precision of the model coordinates is
X = 0oy = 5.6 cm; photo scale 1is
therefore approximately 1:11,000 and
oX = oy 5 um at photo scale. The
model coordinates are considered as
not correlated. From modern
reliability studies, it is known that
double points would give a better
inner reliability in the block, but
that is not our first concern here.
Single points are sufficient to
illustrate our discussion.

The terrestrial networks have the
following structure: Net I: Each

the block 1s also determined in the ground control

network; the sides of the network coincide with the sides of the models.
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2.2 Computing
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For every side in the network, a
distance has been measured with a
precision of o3 = 1.5 cm/km and
directions are measured from both end
points with o, = 1 mgon.

Net II: Polygons are measured along
the perimeter of the block with sides
of 500 m (see Figure 2). For all
sides, distances are measured with
g, = 1.5 cm and from both end points
directions are measured with
dr = 1 mgon.

These two networks are extreme cases
--one is very strong and the other is
very weak., They are not realistic
networks, but they have been chosen
for illustration.

for connecting the block to ground control is derived from

§

3.1).

The

block and the networks are first adjusted
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independently. The coordinate systems are defined by keeping ' the
coordinates of points 1 and 64 fixed with the same values for the block
and the networks. This means that block and networks are computed ‘with
respect to the same S-base.

For the second step of the adjustment, two different computations are
made: (1) the block is connected to Net I and (2) the block is connected to

Net II. 1In both cases, the procedure for the connection is as follows:
Let x!, be the block coordinates of the points used for the connection

and let .Efn be the net coordinates of these points. Let x*, be the
coordinates of other points in the block and let E&n be the coordinates
of other points in the network.

On the assumption that block and network have not been distorted, we get as
condition equations for the connection: ‘

E{gs}

Because the two systems have the same S-base, there is no coordinate
transformation involved here--so we have condition equations according to
Tienstra's Standard Problem I in which coordinates serve as observations.

ﬁip =%, with X-=

i
From the adjustment of the block, we get the coordinates EP with the V.C.

matrix gll glk Xk
i Bkk P
Xi
Similarly, from'the adjustment of a network |~n | with the V.C. matrix
ve get  hy; by xt
n
Byj By

For both networks, three different methods are used to connect them with

the block.

Method 1

The coordinates of both block and network are considered as stochastic;

both sets will be corrected. The condition equations for the adjustment
are:
e
p .
(10-10) k| =0 -%-%1 =0
L ? (1)
i
X
n
1
X
L
Introduction of the results of block and net adjustment gives:
(Lo-10) =A§i»§;-§;=£ (2)

g e
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The V.C. matrix of Axl

Qii = 8ii * hyj (3)
Least squares corrections to the input coordinates are:
gt | i ] ] M ]
a Xy 8ii Bk . F t %ii
k
b ) -
2 i B 0 B
- - -1 i -1, i
axt : b by -1 R R (4)
A X ii .
1 i o 1 11 %)
< :
L Pip M| O Pei |

We 'see that the wvariates gfp and E&n appear with zero coefficients

in the condition equations, which means that they play no role in these
equations. They do get corrections, however, because they are correlated .

with the variates i&p and Efn' The final <corrected coordinates
are:
e 7 e
5 51
‘k Kk Lk
2p . |, %
i i i ’
Eiu, 1ﬂ h\'kn (5)
1 Lo L
\—"ln 4 L_}Sn i _/“ 5.“ ]
but because of the adjustment, we have §ip = .Kin° Since the

ad justment brought all coordinates into one system, we can omit the indices
p and n. The V.C. matrix of these results is obtained from:

8ij glk g ‘) 8ii
=4 g 8 :
_ | Tki Pkk ] Tki -1 _ - (6)
(Crx | h “h i (8 8ik ~ Mg il )
ii i1 ii
z B P11 B

Because ‘zf = }fn, we can omit 1in this matrix the rows and columns
referring to §3n3 S0 we get :

i

2 }‘Gii ®i 611

X G,. G,. G

- 1i "1k 11

where, with Q4y = g3 + hyy
8, 8y 311} » (7)
G 17 B B O] T By (eyi"hyy) (855 &y = Byl

‘o 0 n -h, |

. N -




Instead of omitting the rows and columns referring to .§En’ we could
also have omitted those referring to zfp.

Method 2

This 1is a pseudo least squares ad justment 1in which the terrestrial

coordinates are not corrected after ad justment, but their V.C. matrix is
taken into account when evaluating the precision of the adjustment results.
This is done by replacing the matrices h in the correction equations by a
zero matrix. When evaluating the precision of the final results, the
matrix h is entered in the propagation laws. Hence instead of (4) we get:

i
é.}.(p 83
sx X g (8)
—p ki -1 i
. = hd g. . A x
ax b 0 11 —_—
i—'n
ax 0
L_’n
with Axl = xd - %l . we get:
s ™ Pl r“ M - . -—
W fs] =
k Kk -1 i k -1 i i
X - - -
2 x 8i 8;i °% X T 8y 8y & )
xt i xi i 0 ) xi
-n -0 —-n
1 1 K
X X 0 X
] — L N Ln 4
- . - (9
0 0 10 x-
L3
_ -1 =y k
Bni® 8ij Bri " 8jy %
= i = A x
1 0 LN
o 1 xt
— — L n_J
Because x1 = X, = §in in this case, we can omit the rows
referring to Xl  in these matrices. Thus we get the matrix A, which we
=D

apfly in the propagation law for V.C. matrices. This gives for the vector
(X

xk x1) the v.C. matrix:

[w
P ik i N 8ii By ) .
W) = | My Mg ¥y =4 g Bk A
lw W W 2 11 il
S FE P B
| B ERL T
(10)
T h h.. gl ]
, ii ii Bii %ik il |
o - -1 -1 !
i B My (gkk Bii 815 By ) i 845 My |
H -1 -1
[ TEei 855 Pip 84y 8y
i -1
i h. . - S - h
L 1i 11 ®ii ik 11 _}
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Method 3 ,

The network coordinates are considered to have so much better precision
than the block coordinates that h is also replaced by a zero matrix in the
evaluation of the final precision. The corrections are then computed
according to (8), whereas the matrix Wyy in (10) reduces to:

) 0 0
— -1
Wed = |0 By 7 88 8y O (11)
Lo 0 0
3 THE PRECISION OF THE ADJUSTMENT RESULTS

3.1 The individual networks and blocks

The precision of the coordinates computed from the individual networks and
block is shown in Tables 1 and 2. The semi-major and minor axes of the
standard ellipses for the networks are given. The radii of the circular
standard ellipses generated by the block are also shown. Because for all
these systems the same non-stochastic S-base 1,64 has been used, the
results can be compared. The use of an S-base makes it possible to
interpret the V.C. matrices of the coordinates, and thus the standard
ellipses, as a measure for the precision of the inner geometry of the
networks and the block (see [4], [10], [11] and [12]).

TABLE | Point standard ellipses. S-base (1, 64) Table 1 shows point
_ standard ellipses. For
I-M-glgck LlNet I ) lNec 11 ) reasons of symmetry, there

Point Point ¢y = 5.6 cm L L L.
20 2 R cm em on em cm are 1in these =examples

always two points with
A standard  ellipses of the

63 2 14.02 2.13  1.90 4.30 3.

62 3 20.70 2.77  2.50 7.90  4.38 gsame size. Table 2 shows

61 4 27.92 - 3.51 3.14 10.10 5.11 relative standard ellipses

54 11 9,54 1.45  1.32 2.39  1.91 for several pairs of points.

53 12 12.82 2.15 1.60 These relative standard

52 13 17.53 2.5  2.09

51 14 24.00 2.92  2.87 9.18  4.62 ellipses are computed from
the V.C. matrix of the

44 21 14.19 2.09 1.77 4,30 3,23 Coordinate differences of

43 22 13.42 2.25  1.58 h { 1

42 23 15.74 2.42  1.83 these point pairs.

41 24 20.81 2,71 2.44 7.90  4.38

34 31 17.73 2,47 2.10 6.26  3.97 From these tables, we see

33 32 14.48 2,34 1.67 that the precision of Net I
is by far the best. The
radii of the standard
circles from the block are

Because of the symmetric structure of the block and the net-
works, there are always two points which have the same preci-

sion. five to eight times larger
than the semi-major axes of
the ellipses from Net 1. The precision of Net I 1is also rather

homogeneous. The standard ellipses of Net II are much larger than those of
Net I and less homogeneous, but they are still much smaller than those of
the block. So, both free networks give much better precision than the free
independent model block. The implications of this for the connection of
the block to ground control will be discussed below.




» 3.2 Precision of the
TABLE 2 Relative standard ellipses. S-base (1, 64) independent model block

after connection to

Net T Net II I.M.block

Point Point Ll L2 LI L2 oy = 5.6 cm ground control
. no no cm cm cm cm R cm
To evaluate the precision of
11 21 1.39  1.26 2.73  2.14 9.28 the independent model
21 31 1.40 1.27 2.82 2.09 9.35 blocks, we will connect the
31 41 1.42  1.30 2,77 2.09 9.63
41 51 1.47  1.35 2.70  2.21 10.09 block to each network, and
51 61 1.61 1.41 2.67  2.35 10.83 the three methods described
2 12 131 1.26 7.05 above will be used to study
12 22 1.26  1.17 6.06 the effect of the different
22 32 1.26  1.15 5.80
32 42 1.26  1.17 5.95 assumptions for the
42 52 1.28  1.21 6.48 stochastic models.
52 62 1.33  1.31 7.65
21 41 1.97  1.90 4,93 3.05 14.45 3.2.1 Net T
41 61 2.45  1.97 4.69  3.54 16.88
5 22 1.81 1.7 10.04 Table 3 shows the precision
22 42 1.68  1.65 8.28 of the block connected to
42 62 1.94  1.77 11.35 Net I. This connection uses
2 62 3.07  2.79 10.62  5.57 17.66 points at the perimeter of
the block at intervals of
11 12 1.77  1.73 11.21
21 22 173 1.71 10.40 two times the base length.
31 32 1.75  1.74 . 10.66 The other points of the
;i gg ;gz igg i;g? network and block have been
61 62 2.46  2.13 16.74 treated as free points
(xk and xln).
2 3 2.16  1.90 4.93  3.05 14.19 p
12 13 1.77  1.69 4,69  3.54 10.14 .
22 23 1.69  1.62 8.42 Comparing the results under
32 3 1.69  1.60 7.93 Method I (the rigorous
11 14 3.08  2.82 10.27  5.10 21.69 ad justment) with those under
21 24 2.90  2.80 10.62  5.57 17.94 h 9
31 34 2.85 2.81 10.80 5.78 16.65 Method (the pseudo least

squares adjustment), we see
4 61 4.97 3.94 18.98 7.24 29.30 that the ad justment has very

little effect on the

precision of the network
L1 and L2 are the half axes of an ellipse. R is the radius coordinates. The precision
of & circle. of the Dblock coordinates

improves considerably,
however (compare Table 1). Under Method 3, the coordinates of the network
are not considered as stochastic at all. - It appears that for the free
points of the block it makes very little difference which of the three
methods is applied. This seems to justify Method 3--which is often used in
practice. This statement should be considered with care, however, because
the network used in this example is very well structured so that the
precision 1s rather homogeneous and is much better than the precision of
the free block. A problem is that by treating the network coordinates as
not stochastic, we create discontinuities in the relative point precision
between the perimeter and the interior of the block. These discontinuities
may lead to problems when densification measurements are eventually made
using the output of the block ad justment.
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3.2.2 Net II

For Net II, the results are rather different (see Table 4). This is an
extremely weak network. From the results given in the columns under Method
1 (Ml) and Method 2 (M2), we see that the precision of the coordinates in
this network certainly improves if they are corrected after adjustment.
For the block coordinates, the precision after a rigorous adjustment (M1)
is also much better than after a pseudo adjustment (M2). The columns under
Method 3 show that we would make quite a large error in the evaluation of
the final precision if the network coordinates were not considered as
stochastic at all (compare M2 and M3). Hence the practical approach with
fixed terrestrial coordinates is certainly not justified here.

The two networks used here are extreme cases; one has a very strong
structure, the other ome is very weak. The examples do give an impression,
however, of what kind of errors we make when considering ground control as
not stochastic. For good quality blocks, this is certainly not always
justified. The second network also shows that the photogrammetric practice
of using ground control for planimetry at only the perimeter of the block
does not necessarily mean that the network should be measured only along
the perimeter. Such a network does -not give sufficient support to the
block with regard to precision. A more dense network 1is required--not
necessarily as dense as Net I, but extra connections between the opposite
sides would strengthen Net II considerably. :

4 THE RELIABILITY OF THE ADJUSTMENT RESULTS

The rellability of the networks and the connection of the block to each
network is evaluated under the assumption that data snooping is performed
according to Baarda- [2, 3]. Hence tests are made 1in the different
ad justment steps to detect possible observational errors. If the
observations are tested with a level of significance a, then the
reliability of these tests 1s expressed by the boundary value of the
observations. A boundary value is the magnitude of an error which can just
be detected with a specified probability 8.

In our examples, we will use o = 0.001 and 8 = 0.80. When evaluating the
reliability of a network, we are interested in not only the magnitude of
errors which can be found in the observations=--the internal reliability--
but also the effects which an undetected error may have on the final
coordinates=--the external reliability. This effect is therefore computed
for each observation.

We will first consider the reliability of Net I and Net II individually and

then the reliability of the connection of the block to each network.
Computations have been made using the programs described elsewhere [5].

4,1 Net I

The strength of this network becomes apparent from the rather small

boundary wvalues for the observations. For direction measurements, these
values are between 5.6 and 8.1 mgon. The effect of an undetected error on
the coordinates is another indicator of the strength of the network. In a
strong network, these effects will be small.
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In this network, we find that the effect of direction measurements is not
larger than 5.6 cm. We should keep in mind, however, that the coordinate
system has been defined by keeping points 1 and 64 fixed as an S-~base. The
choice of another S-base will lead to other values for the distortion of
the coordinates. In an S-system, each erroneous observation will give its
own vector of distortions. .

As a measure of distortion caused by a particular observation, we can use
the quadratic product formed by the inverse of the V.C. matrix of the

coordinates post-multiplied by the related vector of distortions and pre-

multiplied by its transpose. For an observation %y, this product is
called Aj. For example, let the effect of an undetected error in
observation % with the magnitude of the boundary value, on a function F
of the coordinates, be V4F. We then find:

ViF < Y Xy op op? is the variance of F

If Ay is used as an indicator for the reliability of a network, then its
advantage over the distortion vector of the coordinates is that this vector
depends on the S-base, whereas §§ is invariant after the transformation
of the coordinate system from one S-base to ancther. A disadvantage 1is
that the value of ?i.sg is in many cases far too high as an
upperbound for YF. In Net I, we find for direction wmeasurements that 2.6 <
Y Xy < 4.4, which means that the effect of undetected errors is rather

small.

The boundary values of distance measurements are between 11.4 cm and 18.9
cm. The effect on the coordinates (S-base 1,64) is as much as 15.3. cm, so
even 1in this strong network the distortions caused by erronescus distance
measurements can be considerable. The effect of an error in distance 1-1
is given as an example in Table 5. The distortions of the coordinates are
given only for points of which at least one coordinate has been distorted
by at least 5 cm.

For distances, we find 2.6 < ¥ Xy < 11.5; thus distortions can be
considerable. We should keep in mind, however, that all these values have
been computed under the assumption that the observations are tested with
gignificance level o = 0.001. For errors with the magnitude of the
boundary value, the power of the test has been fixed here at g = 0.80.
This means that in most of the cases in which errors of this magnitude
occur, they will be detected. Thus when the measurements are performed
carefully, the probability of such errors occurring is small and, if they
occur, the probability that thev will be detected is large. The network is
therefore rather well protected against distortions caused by undetected
errors.

In connecting the block to this network according to (rigorous) Method 1,

we again assume that the block has been adjusted internally using points 1

and 64 as an S-base. The connection points are the same as used earlier.

When data snooping is applied to the coordinates of these points after the

connection, the boundary values of these coordinates are as follows:

- the coordinates of the corner points (1, 61, 4,64) have boundary values
ofapproximately 43 cnm

~ the other ccordinates used for the connection have boundary values of
approximately 32 cm.
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These values have been computed for o = 0,001 and B = 0.80. If an
individual control point=-=-in either the block or the terrestrial system--
has been distorted, errors of this magnitude can easily be detected. Test
computations show that 1if such an error is not detected, the adjustment
will compensate for it almost completely provided it occurs in the block
coordinates. Then only a small local effect will be left. If it occurs in
the ground coordinates, however, it will hardly be compensated for at all.
Almost the full effect is felt in the final results of the adjustment. The
effect is a local one, however, i.e., only the distorted point itself and
some peints near it are effected.

Undetected errors in the original network are more harmful. The results in
Table 5 can be used as an example. These distortions were caused by an
error of 18 cm in distance 1-11, the boundary value of that observation in
the network adjustment. If the distorted coordinates are used for the
block connection, then almost the full effect will propagate to the finally
ad justed coordinates,.

The distortion pattern of the final results is shown in F a
snooping after adjustment--i.e., testing 1individual coordinates=--wi
o = 0.001 does not reveal this distortion, sc¢ the final results will be
accepted without this sericus defect being noticed.

For this particular network, however, it is very unlikely
errors would remain undetected; hence the risk that this de
actually occur is rather small.

4.2 Network II
—cEOIE L

This network is weak, as can be seen from the standard ellips
points and from the boundary values of the observations and their effe
the coordinates. The boundary values of the direction obhservations ar
between 20.1 and 25.8 mgon. The largest effect on the coordinates {5-bas
1,64) is 44 cm, whereas 14 < ¢ Ay € 18. This network is therefore muc
more sensitive to undetected errors in the direction observations than Net
I. This is even worse for distance measurements; their boundary values are
all approximately 158 cm and their possible effect on the coordinates can
be as much as 155 cm.

]

=
=
h

™

2

Table & gives the effect of an error in distance 1
effects on the coordinates are shown only for point
thaﬁ 50 Ce

03-2 as an example; t
s where they are larger

The connection with the block 1is as dese
precision of this network is much lower ¢
boundary values of the i rd
not much different. The coordinate
values of approximately 45 cm

connection points a
distorted with these wvalu

kel ~

when ftesting wit
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TABLE &
Effect on the coordinates
if » 50 ¢m

TABLE 5
Effact on the coordinates
{f » 5 cm:

Point X Y
11 15.3 - 0.6 cm
21 13.86 0.9
31 12.2 2.5
41 10.9 4.1
51 9.8 5.6
61 8.6 7.1
2 8.5 - 2.4
12 9.8 - 2.5
22 9.5 - 1.2
32 8.7 0.3
42 7.7 1.8
52 6.7 3.3
62 5.6 4.7
3 9.1 - 4.9
13 8.0 =~ 4.2
23 6.9 ~ 3.2
33 5.9 - 1.9
4 7.4 - 7.2
14 6.1 - 6.3
24 4.8 - 5.3
/3y = 11.5
Net I, distance : 1-11
Boundary value : 18.5 cm
Effact on corrsctad
cbsarvation 1 16.4 com
TABLE 7

Effect on the coordinates
if » 12 cm:

Point ) 4 Y Point X Y
2 0.5 144.4 cm 2 0.1 36,1 em
104 2.6 140.9 104 0.7 35.2
105 5.5 137.3 105 1.4 34,3
106 9.3 133.8 106 2.3 33.3
3 13.7 130.3 3 3.4 32.6
107 19.3 126.7 107 4.8 31.7
108 25.1 123.2 108 8.3 30.8
109 32.0 119.6 109 8.0 29.9
4 39.7 116.1 4 3.3 29.0
110 36.4 109.6 40 9.1 26.0
111 33.0 98.5 111 3.2 24.6
112 29.7 88.8 112 7.4 22.2
14 26.4 78.8 14 6.6 19.7
113 23.1 68.5 113 5.6 17.1
114 19.8 58.0 114 4.9 14,5
j‘j; = 104.5 §et‘EI, error of &§ cm
in distance : 103-2

Net 1I, distance 103=-2
Boundary value 158.6
Effect on corrected

observation 158.3
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individual coordinates mentioned above. Test computations, however,
that data snooping applied to the coordinates of the connection points does
not lead to any rejection when testing with a = 0.001. The largest test
value was 2.6 for the y-coordinate of point 2, whereas the critical value
of the test is 3.3. The adjustment results show that here, too, nearly the
full effect of this deformation propagates to the final coordinates (see
Figure 4). :

The situation for this network is much more dangerous than for Net TI.
Large distortions were not very likely to occur there because data snocoping
in the original network gave good reliability. Net II, however, 1is too
weak to detect errors of the size used in this example (8 = 1 percent), so
they easily slip through to the second phase of the ad justment=--in which it
is not very likely that they will be detected.

5 DISCUSSION

At this point, a few observations should be made concerning the examples.
The first observation concerns the computational procedure. The strategy
followed here seems to be different from normal practice in the sense that
the network and the block are first adjusted independently. For the
network, that 1is a normal procedure; the coordinates computed after
ad justment are introduced as ground control for the block., The block,
however, is generally adjusted and connected to ground control in one step.
The main reason for this is that height control especially is neseded ¢t

-

stabilize the solution of this adjustment. This is merely a practical
reason. In theory, however, it makes no difference for the evaluation of
the quality of the connection of block and network whether this connection

is performed in a separate adjustment step or not.

The conclusions of this paper are therefore equally valid for the practical
approach. The approach used here was chosen to demonstrate clearly the
effect of the different assumptions on the precision of ground control.

Method 3 1is most often applied in practice; this is justified insofar as
the terrestrial coordinates are not given a correction after ad justment.
The reason for this is that the precision of the network is in general much
better than the precision of the free block, so that the corrections
applied to the terrestrial coordinates are negligible. The precision of
the block after connection to ground control can be so good, however, that
the V.C. matrix of the ground coordinates cannot be ignored for evaluating
the precision of the total system. Then Method 2 is appropriate. If the
V.C. matrix of the terrestrial coordinates is not available, we could use
substitute matrix as proposed elsewhere E&§ 10|. This is preferred over a
diagonal matrix because the structure of land surveying networks gives
correlation among cocrdinates.

[

For evaluation of the re to ground

control, only Method 1 ha connection
were made by Method 2, ¢ 1 to give
proper tests in a pseudo 1 tion were
made by Methed 3, the rela rence with

Mett Net I and

Method 1. With Method 3
Net II would vanish compl
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Because of undetected errors in the land surveying networks, the final
coordinates of the block are distorted over the whole block (at some points
as much as 15 cm for N¥Net I and as wmuch as 36 cm for Net II). The ianer
geometry of the block is distorted only where the error in the network
occurs (in the vicinity of point 11 for Net I and near point 2 for Net II).
The geometry of the rest of the block is hardly effected. The quality of
the block therefore did not really deteriorate as much as the distortions
of the coordinates suggest. Problems may arise, though, when the block is
connected to neighboring point fields which are not effected by this
distortion. This observation may indicate how careful we should be when
evaluating the accuracy of blocks by comparing the block coordinates with
another set of coordinates.

Discrepancies found in such a comparison do not necessarily indicate a poor
block quality or serious systematic deformations. Judgement should be
based instead on a comparison of the inner geometry of the two coordinate

-

systems; measures to compare these should be defined (see LQ}).

The networks used in these examples did not make use of any higher order
points. Local coordinate systems were defined by means of an S-base. The
coordinates in an S-system are a direct function of the geometry of the
network. This was done to show the essential task of ground control points
in a block adjustment. That task 1is not so much to define a ccordinate
system but rather to control the geometry of the block. Therefore, the
internal geometry of the network should be well determined by the network
structure itself. That means that the network should be structured so that
it gives sufficient possibilities for testing for errors ia the
observations, i.2., have high internal reliability. Connecticn to higher
order points could then be used to link-up with a national coordinate
system, but this can be done safely only if the higher order points have
not been distorted. The network should therefore be strong encugh and
there should be enough radundant higher order points to test these points
while linking-up. This approach is in fact quite different from common
practice, where higher order points are used to support or strenghten the
network. In our philosophy, networks for the determination of ground
control for aerotriangulation blocks should be self-reliant,

We see that the role of ground control points in a photogrammetric block
ad justment is different from the role of higher order points in a network
ad justment.

The two networks are extreme cases. Net I is very stroung, but a structure
like this will in many cases be difficult to realize, In general, the
topography will make it impossible to weasure all sides indicated and,
moreover, this 1is too expensive and anyway not necessary. There are
simpler structures which also give sufficient support to the block. Net II
is too weak, but it has the advantage that polygon networks like this are,
with some modifications, often easy to realize. In addition, no
measurements are made in the interior of the block where, according to
traditional photogrammetric specifications, no ground control is needed for
planimetry.
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The quality of the network can be improved considerably by measuring two
polygons through the interior of the block, however, thus dividing the
network into four closed loops (see Figure 5). If the side lengths of
these extra polygons are also
approximately 500 m, the boundary
By ' o T T values of the measured distances
r T A reduce to approximately 50 cm, which
- + . is one-third of the original value.

The effect of an undetected error on
the final <coordinates reduces
proportionally. After this
densification, we thave a network
- which is strong enough to support the
L + - block adjustment and will be feasible
in real terrain. The short side
lengths require many instrument
stations, which make the measurement
of the network expensive. If the
topography of the terrain allows an
. average side lengths of 1 km, the
Fig. 5 number of stations is reduced by half
and the boundary values of the
distances reduce by two-thirds. This leaves boundary values of 110 cm for
distances in a polygon at the perimeter of the block {as in Figure 2) and
37 ¢m if polygons through the interior are 'ded (Figure 5). The possi ble
distortions of the coordinates are reduced rtionally. ZErrors in ti
directional observations are less harmful; ¢ not discussed
here,
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The traditional strategy in aerotriangulation--choosi control points for
plan;mecry at only the perimeter of the block--has i main importance for
controlling the precision of the adjusted block coordinates. This strat egy
was developed under the assumpticn that ground control can be considered as

not stochastic. This assumption, however, is justified only as far as it

leads to no correction of ground control coordinates after ad justment. For
evaluating the precision of the total system after justment, maintaining

this assumption depends very much on the quality network and the
block. On the other hand, we saw that the *Qéfabi7 the total system
also depends largely on ta, quality the netwo Consequently, the

=
block and the network should be planned together ia a combined effart of

0
W’ or
L]

of
d

photogrammetrist and land survever to obtain an integrated point
determination system designed to meet uniform requirements for precision
and reliability

he fact that a terrestrial network will get sufficient strength only if
measurements are made through the interior of the block area means that the
selection of plan ground control points need not to be limited to the block
perimeter. The argument that this will reduce the work of the land

The examples in this paper referred to a rather small block with a simple
block structure ian which only planimetry was considered. When height is
also taken into account, we should first define a loeal system for height
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or for the combination of planimetry and height. Then experiments should
be made similar to the ones described here. It 1is about time that
geodesists and photogrammetrists get together to come to an integration of

736

their survey systems=--certainly in an era when people are discussing the

possibilities of setting up integrated land information systems.
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