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ABSTRACT

Rectification of single scanner frames is carried out using a
newly developed comprehensive geometric model. The performance
of this model is compared to that of the widely used polynomial
model, using both synthetic and real data. The effect of the
number of control points on rectification accuracy, as well as
the effect of control position accuracy both on the image and
on the ground are studied. A block adjustment method of
rectifying strips of overlapping frames is also implemented
using the above geometric model and its performance is compar-
ed with single frame rectification.

INTRODUCTION

Satellite scanner data are digital images consisting of pixels.
Each pixel has two types of attributes, the first concerns
multiple spectral values, and the second is its ground posi-
tion. The spectral values associated with a pixel, which
represent the relative amount of reflected and/or emitted
energy from the imaged object are directly measured. The
ground position of a pixel, however, can only be computed
indirectly from other measured quantities. The process of
finding the ground position of pixels is called rectification.
In this process, known locations on the ground or its map
representation are used as reference. If, on the other hand,
the reference is another remote sensing image, then the
process is known as registration.

Unlike frame photographs which are essentially area sensing
systems, scanner imagery is basically a point sensing system

in which the pixels are exposed sequentially. Since the-
satellite is moving in space, each pixel has its own unique
exterior orientation elements which correspond to the satellite
position and sensor attitude at the moment a given pixel is
sampled. 1If the exterior orientation elements (i.e. position
and orientation) are completely known, the ground position of
pixels can be directly computed given either overlapping image
data sets, or one image set with some assumptions about the
object. Satellite position can be derived from ground tracking
data and the sensor attitude can be supplied by measuring
instruments on-board the satellite. Unfortunately the accuracy
of the resulting exterior orientation elements derived in this

o
manner is not acceptable for quality rectification.

An alternative method of deriving the exterior orientation
elements is through the use of ground control points. These
are points-of known image and ground position. This method
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can be further classified into two approaches according to the
type of model used to relate the image to the ground. The
first approach uses interpolative models, such as polynomials,
to transform the image to the ground. An important character-
istic of this approach 1s that the orientation elements are
not explicitly derived. Because of this, a-priori knowledge
of some or all of the exterior orientation elements cannot be
exploited during the adjustment. Interpolative models,
especially higher order ones, by their nature, require a lot
of control points for uniform accuracy.

The second approach, known as the parametric approach, uses
mathematical equations which attempt to model the geometric
process involved in pixel imaging. In this approach, the
exterior orientation elements are explicitly derived. Due to
the weak geometry of scanner images, the model parameters are
highly correlated, which frequently results in ill-conditioned
normal equations during adjustment., This ill-conditioning can
be minimized by one or more of the following: (1) a well-
designed model; (2) using a-priori information on the exterior
orientation elements; (3) solving for sub-groups of parameters
in stages; and (4) reducing the number of parameters used in
the model. :

LITERATURE REVIEW :

The earliest approach to rectification of satellite scanner
data utilized polynomials, as mathematical models. Its

reported accuracy was comparable to other methods (Forrest [9],
Trinder [22], Bahr [2], Dowman [6]). Because of its simplicity
and accuracy, polynomials are still the most commonly used
rectification model.

The earliest parametric model for satellite scanner data was
an adaptation of models used for aircraft scanner data. This
type of model assumed that the satellite orbit is a straight
line and that the earth is flat or projected onto a mapping
plane (Kratky [12], Konecny [11], Dowman [6]). Only the para-
meters describing variations in sensor attitude and satellite
elevations were recovered.

The next improvement in parametric modelling defined the
satellite orbit and position in terms of satellite position
and velocity vectors (Caron and Simon [5], Puccinelli [181]).
The flat earth assumption was also done away with in favor of
the spherical earth (Caron and Simon [5], Bahr [3], Sawada
[20]). Then the satellite position was defined in terms of
orbital parameters which vary with time (B3ahr [3]). Still
the resulting models were not stable.

Next, the orbit was defined in terms of constant orbital para-
meters. Only the small deviations of the predicted satellite
position on this orbit from its actual position were modelled
as functions of time. The shape of the orbit was modelled as
a circle (Forrest [8], Levine [13], Synder [21]) and as an
ellipse (Bihr [3], Sawada [20]). Only Levine, so far, has
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incorporated in his model all the components of satellite
position deviation. Like the others, however, he recovered
only the radial or elevation component,

Some authors have recommended that the ellipsoid of revolution
be used as the earth model instead of a sphere (Puccinelli [18],
Forrest [8], Levine [13], Synder [21]), but so far no formulas
in closed form have been derived yet for computauion on an
elliptical surface. Computation on the earth's ellipsoid
involving non-zero elevations require approximations and/or
iterations.

A model which assumes that the satellite orbit is an ellipse
and that the earth is an ellipsoid of revolution was recently

derived (Mikhail and Paderes [17]). Also recentl effective
Vs

use of a-priori information

regarding the sensor attitude,

made feasible the bridging of long strips

with control at each

end only (Friedmann [101]).

SCOPE OF THE INVESTIGATION

We have developed a comprehensive geome ¢ model which minim-
izes the ill-conditioning of the resulting normal equations
during the adjustment (Mikhail and Paderes [17]). The model
is based on the photogrammetric collinearity equation and has

the following form:
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where:

X, ¥, 2z are the coordinates of a given point in the
image space. These coordinates are functions
of pixel row and column numbers and the
internal sensor geometry.

X, ¥, Z are the corresponding ground coordinates of
the given pixel,

XS, YS, Z are the ground coordinates of the satellite
=7 s, s s - I3

position when the given pixel is sampled.
These coordinates are the sum of the ideal
or predicted satellite positien and the
deviation of the actual satellite position
from the predicted one. The ideal position
is a function of orbital parameters and
time while the deviations are functions of
time (t) only.

t is time which is a function of pixel row and column

numbers and the internal sensor geometry.

M is an orthogonal rotation matrix which brings the

ground coordinate system into the sensor coordinate
system. This is a function of time, sensor attitude,
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deviation of the satellite position from the ideal,
orbital parameters and earth geometry.

A 1is a proportional constant which varies from pixel
to pixel (i.e. a scale factor).

This model has been extensively tested using simulated data,
as reported in Mikhail and Paderes [17]. Five different sets
of experiments were performed to study the following factors:
(1) the effect of error in parameter estimates on rectifica-
tion accuracy; (2) the relative performance among four
different cases, each a specialization of the extensive model
as well as the polynomial model; (3) the effect of different
control densities on rectification accuracy; (4) the effect
of errors in derived image position on rectification accuracy;
and (5) the effect of errors in measured ground position of
control points on rectification accuracy.

For the present paper, we used the above model-to. rectify two
frames of real data and corresponding sets of simulated data.
Previous conclusions using purely simulated data were generally
confirmed. Also, a block adjustment procedure based on the
same model was developed to accommodate overlapping images.
Block adjustment is worth investigating because it reduces the
required number of control points for a given level of rectifi-
cation dccuracy. Some results regarding block adjustment are
shown.

EXPERIMENTAL RESULTS

Experiment 1

Two MSS frames taken by Landsat 2 were used in this experiment.
The first frame covers Kansas state which is relatively hilly.
It has 153 uniformly distributed control points. The second
frame principally covers the state of Louisiana which is flat.
About 1/3 of this frame on the south-east corner is over the
sea. It has 192 well distributed control points, although not
as uniformly as in the Kansas frame.

Ten cases were run for each frame corresponding to two types

of model (collinearity and polynomial) and five types of
control configuration. For each case, withheld control points
were used as check points. Table 1 shows the results. The
collinearity model is superior to the polynomial model when

the control points are few especially in hilly terrain such as
the Kansas frame. Also, increasing the number of control points
beyond 25 has only a marginal effect on rectification accuracy.
This confirms in general our previous results using simulated
data (Mikhail and Paderes [17]). Two additional cases for

each frame were also run where all the control points were
exercised in the adjustment. The RMS of the residuals on
control points for the Kansas frame were 58.8 and 57.8 m. for
the collinearity and polynomial models, respectively. The
corresponding values for the Louisiana frame are 61.2 and 60.1
m. These values are the upper bounds of the quality of the
data. They are used in the second experiment to determine the
precision of the image measurements input into the simulation.
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Table 1 RMS Error on Check Points in Meters Using Real Data

Number . ..
of Kansas Louisiana

Cont 1 . . : . .

P;z;g; Collinearity | Polynomial Collinearity | Polynomial
10% 68.8 117.1 90.4 96.6
15% 67.9 73.6 72.3 71.7
25 67.6 70.4 69.3 67.3
40 67.9 69.5 66.0 65.4

81/70%% 63.8 65.5 68.4 68.4

* When the number of control points is low, the number of
parameters in the model is reduced to avoid convergence
problems.

#% 81 control points for Kansas frame and 70 for Louisiana
=
rrame.,

Experiment 2

Using our extensive simulation program, the characteristics of
the two real image frames were used to produce simulated
images which reproduce as closely as possible the real images
with respect to control configuration and accuracy. This is
done with the full control case, where perfect ground
coordinates are calculated from the given image coordinates
and exterior orientation paragmeters. Then the calculated
ground position of control points for both frames were per-
turbed using normal distribution with 15 m. standard deviation
in each of the three coordinates. The image positions were
perturbed using a combination of normal and uniform distribu-
tion. The uniform distribution used for perturbing both
frames has a range of -0.5 to +0.5 pixel, and is used to
account for round off errors. The normal distribution used
for perturbing the Kansas frame has standard deviations of
0.44 pixel in row and 0.40 in column direction. These arte
the values which when used in the simulation program produced
the RMS values given at the end of the preceding section for
the full-control case. The corresponding standard deviations
for the Louisiana frame were 0.40 pixel in row and 0.64 pixel
in column direction. Several sets of simulated data with the
described perturbations but with different "seeds" in the
random number generator were produced and rectified., Table 2
shows the results of rectification using a representative
simulated data set. Comparing Tables 1 and 2, it can be seen
that the trends in Table 1 which resulted from rectification
of real data are duplicated in Table 2.

Experiment 3

Simulated data using the control configuration of the two real
data frames but without perturbations were produced (i.e.
perfect data sets). The rectification results using this
perfect data set are shown in Table 3. From this table, two
significant results can be seen. First, it is possible to
recover the correct set of exterior orientation elements using
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Table 2 RMS Error on Check Points in Meters Using Simulated

Data

Nuf?er Kansas Louisiana
iiZJiij Collinearity | Polynomial | Collinearity | Polynomial,

10%* 84.0 134 .4 80.9 89.9

15% - 76.9 82.0 78.7 79.6

25 75.4 74 .8 72.5 73.8

40 64 .6 64.6 65.0 64 .8
81/70%%* 61.9 62.9 60.5 61.0

%# When the number of control points is low, the number of
parameters in the model is reduced to avoid convergence
problems.

*% 81 control points for Kansas frame and 70 for Louisiana
frame. ‘

Table 3 RMS Error in Check Points in Meters Using Perfect Data

Nu:?er Kansas ' Louisiana
Control . . . s . ' .
Points Collinearity | Polynomial | Collinearity | Polynomial
10%* 11.8 102.5 10.9 15.4
15=% 0.6 13.2 0.3 11.2
25 0.5 10.8 0.3 9.6
40 0.5 10.4 0.3 9.6
81/70%% 0.5 9.9 0.3 9.8

* When the number of control points is low, the number of
parameters in the model is reduced to avoid convergence
problems.

*% 81 control points for Kansas frame and 70 for Louisiana
frame.

the collinearity model if the data is perfect. Second, and
more importantly, it shows that systematic error inherent in
the polynomial model is about 10 meters.

Experiment 4

A block of 9 frames in 3 adjacent orbits and 3 frames per orbit
were simulated. The center of the block is approximately at
58.5°N latitude. The frames have about 607 sidelap between
orbits and 15% overlap along each orbit. There are 454 control
points at a grid enterval of 20 km, and 453 check points also
at a grid interval of 20 km. The check point grid is displaced
by 10 km in both easting and northing with the result that each
control point is surrounded by 4 check points and vice versa.
The ground position of both sets of points were perturbed by

15 m standard deviation in each of the three coordinate
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directions using the normal distribution. The image position
of both sets were also perturbed using a combination of uniform
and normal distribution. The uniform distribution has a range
of -0.5 to +0.5 pixel. The normal distribution has a standard
deviation of 0.5 pixel in both row and column direction. Five
cases of block adjustment were run with different control
configuration, Table 4 shows the number of control and ‘check
points for each frame and for the whole block for each of the

5 cases., It also shows the number of tie points in the block
for all cases. A tie point is any point common t¢ twWOo OT morTe
image frames which has known image positions but unknown ground
position and is included in the block adjustment. In this
experiment, the ground elevation of tie points were constrained
to its a-priori value. This is necessary because it was
previously shown that elevations cannot be recovered with
sufficient accuracy using block adjustment technigues for
aircraft scanner data (McGlone and Mikhail [16]) and aircraft
scanner imagery has a much stronger geometry compared to
satellite scanner imagery.

Table 4 Control and Check Point Distribution for Block
Adjustment

—
™. Cases Number of Control Points N“mﬁer
~ of
S Check
Frames L 1 2 3 4 5 Points
1 11 15 27 45 91 50
2 9 13 24 39 : 91 89
3 9 13 26 41 88 87
4 11 15 25 45 89 86
5 11 15 26 42 89 86
6 10 14 26 41 30 86
7 10 14 25 42 88 88
8 10 15 26 b4 89 87
9 11 16 26 42 85 88
Block* 42/224  66/212 | 125/180 1 214/134 | 454/0 453

# control points/tie points

Table 5 shows a relative comparison of RMS errors on check
points on a frame by frame basis between block adjustment and
single frame rectification for all five cases. The case where
the parameters are perfectly known is included as a reference.
It clearly shows that tie points, which are much more readily
available (and less expensive) than control points, have a
beneficial effect on rectification accuracy especially when
control points are few. This improvement in accuracy is
essentially due to tie points because block adjustment without
tie points is equivalent to single frame rectification.
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Table 5 A Comparison of Check Point RMS Error in Meters
Between Block Adjustment and Single Frame
Rectification#*

Cases
1kk Dk % 3 4 Sxkk Perfect
Frames Parameters

1 93/- 79/92 66/76 67/70 66/66 65
2 77/~ 76/- 68/79 74/80 69/69 62
3 117/- 100/~ 73/81 80/79 79/79 68
4 87/-1 77/98 65/73 67/66 65/65 63
5 76/- 74/142 67/73 70/72 68/68 64
6 79/= 747142 63/69 69/70 63/63 62
7 113/~ 70/85 65/72 65/68 65/65 59
8 92/- 97/- 64/81 69/76 68/68 60
9 83/~ 72/82 65/78 67/69 68/68 62

Ave. 90.8/- 79.9/- 66.2/75.8 | 69.8/72.2| 67.9/67.9 62.8

* Block adjustment with tie points/single frame rectification-.

*% Single frame rectification did not converge because of few
control points (no model parameter reduction 1is exercised
in this case).

k%% Block adjustment for case 5 is the same as single frame
rectification because there are no tie points.

CONCLUSIONS

The developed model performed as designed on both real and
simulated data. The block adjustment procedure based on this
model was successful. Tie points improved rectification
accuracy especially when the control points are few. Some of
the previous results based on purely simulated data were
confirmed. One such result is that the collinearity equation
is superior to polynomials when the control points are few.
Another is about the maximum number of control points, where
control points in excess of 25 has only marginal effect on
rectification accuracy. Although not covered in the present
paper, it was previously shown that rectification is more
sensitive to image position errors than to ground position
errors of control points and that uncertainty in attitude
estimates is the main source of error in system corrected
images.
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