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ABSTRACT

A method for computing selected parts of the rigorous inverse of
a positive definite matrix is reported. The method is a gener-
alization of those methods where only the banded or banded-bor-
dered part of the inverse is computed. The use of the method for
photogrammetric tasks is illustrated, especially for the proce-
dures of gross error detection.

1. NTRODUCTIOCN

The computation of weight coefficient matrix of unknown narame—
ters of an aajustment problem has been in the interest of phot

grammetrists for years. This 1is due to ch computational diffi—
culty: Assuming the triangular factorization of the coefficient
matrix of normal equations is available, still approximately
l/3n3 multiplications are needed in genera l for complete inver-
sion. A block adjustment of medium size a ready involves  thou-
sands of unknowns uagzna the rigorous inversion impossible in

practice. Additicnally, in most cases only the parts cf the
inverse corresponding the non-zero parts of the original coeffi-
cient matrix are regquired.

The utilization of the banded structure of the coefficient ma-
trix of the reduced normal equations in the solution as well as
in the inversion was proposed by Gyer (1967). The inversion re-
guires approximately twice as much work as the factorization.
This is reasonable and enables an application of rigorous sta-
tistical tests for evaluation of accuracies of individual pa-
rameters also in practice.

Later the method - usually discussed under the title of recur-
sive partitioning - has been used especially by Brown (1976) and
generalized for banded-bordered matrices. In this presentation
the method is further generalized for matrices with arbitrary
sparsity structures.

s error detection have

In recent vears, the methods for gr
o) tatistical methods. The
™

turned toward the use of rigorou

"data-snooping® met and the method proposed
by Stevancvic (1978) are the most famous ones. Both of them rely
on the use of the weight coefficient matrix of residuals, Oy
matrix. The data-snooping method requires only diagonal element

of Qg+ matrix. Effective methods for computing them utilize the
sparsity of the design matrix as well as the techniques for
computing Qy, matrix which are discussed above. They have been
proposed by Klein & Forstner (19%981), later by Schwarz et al.
(1982) and Larsscn (1983)
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In this paper the techniques for computing Qyy matrix are fur-
ther developed. Especially, a method for computing off-diagonal
elements is reported. The use of the method is motivated by
bringing forth the nature of photogrammetric image observations
which favours the use of two-dimensional tests.

2. BLOCK FACTORIZATION

In most adjustment tasks of surveying we have as basic units of
unknown parameters rather groups of parameters than single pa-
rameters. In the self calibrating bundle adjustment we naturally
have a group of unknown parameters for each ground point (3
param. for each), for each photo (6 param. for each) and for
each subblock of photos which are assumed to have a common de-
formation, each subblock having the number of parameters accord-
ing to the selected model extension. It is thus natural to re-
present the resulting design matrix and positive definite coef-
ficient matrix of normal equations accordingly.

Let A be a positive definite n-'n matrix consisting of m hyper-
rows and hypercolumns and thus having a partitioning

All
Aoy Apy symm.
A = ... | ()
Aml Am2 --- Ampm
each index k (k = 1,...,m) being connected with the dimension

ng corresponding to the number of parameters in each individual
group. Matrix A can be factorized to the form

A = 1pLT (2)

where L is a lower triangular matrix with identity matrix as Lk
(k = 1,...,m),

L1
L1 L22

L = . . R (3)

Lm1 Lmo «--

and D is a blockdiagonal matrix with diagonal matrices Dgy (k =
l1,...,m).
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The algorithm for constructing L and D by recursive reduction of
one hyperrow at a time is as follows:

B(k) _ i(k)

= (4a)
ada a4
(x)  -(x) ()% }

L~ = A ' D (k =1,...,m) . (4b)
0a Da aa

T
-(k+1) =(k) (k) =(k)
A = AL L. AL J (4c)

-(k .. .
w?fge A( ) notes the reduced coefficient matrix at step k and
A,

The diagrams below show the correspondence of the partitionings:

-
L., I
N
L L ) I 0
21 22
. . . (1) .
A
L = . . . = L | . {(5)
ba (2]
. . . L, .
L I T ba T
d - - - d .
ml m2 mm (IR
(v
aa ab
- (2)
aa ap
ba bb i ba bb
(m-1)
aalab
. (m)
balbb — iaa

Matrices A and D are partitioned respectively.

The analogy between the conventional LDLT~factorization and the
above given block-LDLT-factorization is obviocus: Instead of

51ug*e elements we have submatrices as working units. Zero mat-
rices can be easily skipped in co 1put3**guu because the part-
itioning used in the dﬂccho sition fits with the natural part-

itioning of the problem.

The algorithm above follows the idea cf +he outer D:cduct tech-
nigue (see e.g. George & Liu 1981) '
product technigue and the borderi :
applied analogically. They render
without usage cf double precision storage
outer product technigue) being thus
stances.
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The hyper-Cholesky method (Ackermann 1972) as well as the recur-
sive partitioning used by Gyer and Brown can be derived of the
block-LDLT-factorization by treating the submatrices Dyxx (k =
l1,...,m) in different ways.

3. INVERSION

Noting by B the inverse of A and following the partitioning of
(4) and (5) we get a recursive algorithm for inversion:

B(k) _ —;B(k) L(k) (6a)
ba bb ba
-1 - (k =m;,...,1)
B(k) - D(k) _ L(k) B(k) (6D)
aa aa ba ba

The algorithm above is the conventional method working back-
wards. Alternatively we can construct the inverse by an approch
working forwards, which is known as the bordering method. Before
its introduction the partitionings and the notations are
revised:

: B
SRVl

(k) ‘

A = (%) (%) S (k = 1,...,m) (7a)
A A
yx Yy

A(k) _ A(k—l) (7b)
XX o

(1) _ (m) _ :
A e All, A = A (7¢), (74)

: -1

(k) = A(k) (k =1,...,m) (8a)
c = B = At - (8b)
1) (2) (m-1) : (m)

xx | XY
XX Xy
yx |yy
yx vy XX Xy
——— XX
yx vy

Additionally, the partitioning of L and D is revised respect-
ively. The bordering algorithm where the inverse is updated on
each recursion cycle 1s as follows:
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T T T
k) ] (k) ]
L( M(k) = 1’ solve M(k) (%9a)
XX VX VX VX
-1
(1 (k)
Gkl plx (9b)
Yy Yy
(k I3 k ’
b oo C( ) M( } \ (k = 1,...,m) (9¢)
X Yy ¥x
T
3 k-1 k
C(x) - C( ) M( ) C(k) (9d)
XX VX VX
M{K} from (S%a) will actually be solved by a bac%gards 54E§tlru-
tigﬁ process applyving the a/b-partitioning for LX; ; L « and
M respectively. Y

4. SPARSITY IN INVERSION

4.1 Formulas (6a) - (6b): Sparse matrix techniques used in
factorization are well known. In inversion their usage is more
complex because the inverse ls’ ually a full matrix. However,
the computation of inverse can be restricted to certain submat-

rices:

For computing éiagsaal submatrices o©of inverse B according to
(6a) - (8b), it is necessary to compute only those submatrices
corresponding to the non—-zero submatrices of L.

The following reasoning is given to prove that
also Erisman & Tinney 1975):

Let us investigate the computation of inverse on step (k) of
( } ( e ol ey
ga) - (&b):

o(k)
T < B.
z(“) !f/’ \| ba
o 7
ba\§ /
4
D (10)
-1 T
(k) (k) (k)~ (k) . 5
B = D - L B, (c£. (6b))
aa aa ba ba
We see dire%;§y that it is not necessary to have ;ae Yalhe of
\ : oK o -
submatrix B corresponding to zero submatrix of L,
ba ba’
! olk), .
£ R, is not needed on the

We still have to show that the value
subsequent steps ( k-1 £




7950

Let us first look at the generation of fill-%ﬁ)on step (k) of

(4a) - (4b): PFrom (4a) we can conclude_?ﬁ?t Lba of (10) has
exactly the same sparsity structure as Aba:
o(k)
Tab
={k) (11)
? ’_Aab

- 7 (k)
GRS ATy B

a

7

0 ,grevious recursion cycles (j = k-1,...,1) of (4a) - (4b)
A J must have structure

»

<(3) <(3)
¢ A2b g 435
%46& I Qﬁég I
, < (k) =(k)
i I e B |— 3| |—hy, (12)
T oo
G | —= |0 ab or ; 9 Aab
Case I Case II

otherwise g(k)would be filled.
ab
(k)
0 ba
d B
(an ab

Now we(ﬁfe ready to prove that the computation of %
) can be skipped: :

(3)
Lba

(13)

(cf.(6a))

L (3 = k-1,...,1)




0) these submatrices are not computed on step (k) according to
the reasoning of (10)

1) the necessary condition for avoiding £ill-in, case I,
case II is symmetrical with case I

2) the reasoning of (10) is applied for the subsequent steps
(3 = k=-1,...,1) :

Tpm the matrix product of (13) can be seen that matrices B g (k) and
a are not needed on any step (j = k-1,...,1) of (6a) - (oga.
Due to recursion this holds {Q§ any submatrix of B cdrrespond-
ing to a zero submatrix of L on any subsequent step
(i = k=1,...,1).

.2 Formulas (9a) - (9d): Because M‘k) in (%a) - (9d) is the

solution of the blocktriangular svsuem (%9a), it is a full matrix
even if the right hand side, L is sparse. Thus we can not save
computations in (%9a). However, sparsity can be fully exploited
in the matrix §§cduct of (8d) by updating only desired sub-

(k
vX
s

matrices of CX . The method is applicable especially to tasks
related with regressi n analysis nd self calibrating block
adjustment (Sarjakoski 1984),.

5. Qyv MATRIX

5.1 Basics: In the adjustment model of indirect observations
the weight coefficient matrix of residuals, Qyy matrix, is given
by

Quv = Q11 - Q11 (14)
Q11 = A Qyx AT (15)

Qvv weight coefficient matrix of residuals
11 weight coefficient matrix of given observations

Q
07{ weight coefficient matrix of estimated values of

observations
Quwx weight coefficient matrix of unknown parameters, the
inverse of the coefficient matrix of normal eguations

design matrix

4




352

5.2 Sparsity: In the data-snooping method of Baarda only diago-
nal elements of Qyy are needed. By splitting (15) into two parts

F = A Qux (16)
0144 = F aT (17)
we see that for computing them

1) only those parts of F are needed which correspond to
the non-zero parts of A

2) for computing these parts of F, only the parts of Oxx
are needed which correspond to the non-zero parts of
coefficient matrix of normal equations.

In computation of Qyy for 2) we can utilize the sparse matrix
"techniques explained above. Of special importance is that they
hold for any sparsity structure.

5.3 Two-dimensional tests: The data-snooping method handles
each observation as an individual thus using one-dimensional
statistical tests. The photogrammetric image observations how-
ever consist of pairs of x- and y-observations, which should
always be treated as a single "joint event".

The motive for treating a pair of observations as a Jjoint event
lies in the measuring process already: We are actually measuring
the geometrical location of each image point, the coordinate
system is used as a uniform tool for registration. Addition-
ally, we are incapable of measuring only one of the coordinates
because, to be precise, the pointing must be made in two perpen-
dicular directions.

The F test is the proper statistical test, 1if the reference
variance is estimated from the adjustment model. Its usage re-
quires the 2-:2 diagonal submatrix of Qy+ matrix for each point-
ing, with the off-diagonal elements being computed, too. The
computation is effective because the rows of design matrix A for
x- and y-observation of each peinting have the same sparsity
structure; thus no extra elements of F matrix are needed.

The Jjoint treatment gives some practical advantages: It makes
the test invariant with respect to the camera coordinate system,
thus avoiding the problems pointed out by Fdrstner (1981). It
cancels completely the question about what to do if, according
to a one-dimensional test, only one of the observations is erro-
neous.
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