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ABSTRACT

Given accuracy objectives for a photogrammetric project, the planned network
must be designed in an optimal manner. In this paper the design problem is
addressed in terms of four classes of design: the zero-, first-, second- and
third-order problems. These design classifications are discussed in the con-
text of analytical non-topographic photogrammetry. Specific network charac-
teristics are outlined and design through simulation is discussed. The STARS
simulator package developed by Geodetic Services, Inc., is also briefly
described.

INTRODUCTION

0f central importance in the désign of a multi-station, non-topographic photo-
grammetric network is the overall quality of the network. The quality, in
turn., can be expressed through a number of target functions. To name four:
precision, reliability, economy and testibility (e.g. SCHMITT, 1981). In
Jjudging whether -a design is optimal in some sense, the planner must ensure
that user-specified requirements regarding some or all of these target func-
tions are realized.

Of the target functions mentioned, precision is determined at the design stage
through the choice of an observation scheme for the network, i.e. through the
networks geometric configuration and the accuracy with which observables can
be measured. The interrelated reliability problem is concerned with the
quality of conformance of an observed network to its design, i.e. to what
degree the network is self-checking. At the design stage, optimization in the
area of economy is not usually explicitly addressed, and the testibility
criteria laid down can usually be incorporated implicitly in the examination
of network precision.

In this paper, which is essentially a shortened versjon of FRASER (1983), the
problem of network design as it related to the optimization of precision is
primarily addressed. In this process one is concerned with ensuring that the
quality of the network design is sufficient to enable user-specified accuracy
requirements to be met.

Following the widely accepted classification scheme of GRAFAREND (1974), the
general network design optimization process can be considered to be comprised
of four interconnected stages:

Zero-Order Design (ZOD)
First-Order Design (FOD)
Second-Order Design (SQD) the weight problem
Third-Order Design (TOD) the densification problem

In spite of the fact that the four orders of design are linked through a
number of interrelated aspects, the classification scheme above is widely

the datum problem
the configuration problem
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accepted, and the sequence is essentially chronological. As will be shown,
however, the design optimization process for non-topographic photogrammetric
networks need only consider in detail the ZOD and FOD stages in most practical
situations.

In order to fulfil specified precision requirements a solution for the problems
associated with the four design classes is sought. One of two approaches is
usually adopted in this regard, either computer simulation or analytical
methods. Considerable research attention is currently being directed at strat-
egies which involve a direct mathematical solution for one or more of the design
problems encountered in geodetic networks. However, analytical methods exhibit
both some theoretical and practical difficulties, and most present work seems
to be in the area of SOD, the design problem that is often greatly simplified
for photogrammetric networks.

A more practicable and well-suited method of design involves network simulation.
Through simulation a preanalysis of the propagation of uncertainties in the
observations to uncertainties in the final parameters can be carried out. In
this way precision can be both accurately predicted and compared to the accuracy
specifications for the design. The optimization process then involves, ini-
tially, the approximation of a "good" solution to the specific design problem.
This solution is subsequently refined and updated in an iterative manner,
using a combination of trial and error and established design guidelines, until
the design objective is attained in an optimal manner. One disadvantage of
this approach is the potential time delay between the separate "iterations"
carried out. The advent of powerful desk-top computers with interactive
graphics terminals has, however, both largely removed this time hindrance, and
opened up the possibility for effective real-time computer-aided design (CAD).
Such a simulation package for network design in high-precision close-range
industrial photogrammetry has been introduced by Brown (1982).

In this paper, salient aspects of the four design classifications as they
relate to non-topographic photogrammetric networks are outlined and the-pro-
cess of interactive network planning through CAD is discussed. Features of
the STARS simulator developed by Geodetic Services, Inc. are also briefly out-
Tined.

Z0D - THE DATUM PROBLEM

By referring to the standard parametric model for the self-calibrating bundle
adjustment, the different orders of design can be identified in terms of
fixed and free quantities within the adjustment process. The linear functional
and stochastic model can be written as
_ _ 2 -1

v=Ax-% and C,=0°P (1)
where 2, v and x are the vectors of observations, residuals and unknown para-
meters, respectively; A is the design or configuration matr1x Qi the covari-
ance matrix of observat1ons, P the weight matrix; and o2 the variance factor.
In situations where A is of full rank, i.e. redundant or explicit minimal con-
straints are imposed, the parameter estimates X‘and the corresponding covari-
ance matrix C, are obtained as

_,1 _ 2
= QA At PL and C =0 Q (2)

- — =x

X = (A"PA)

where Q  is the cofactor matrix of the parameters. If A has a datum defect of
rank, a Cay1ey inverse of the singular normal equations is not possible and
some form of free-network approach employing implicit minimal constraints
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(e.g. through generalized inverses) is adopted.

The datum problem or ZOD involves the choice of an optimal reference system
for the object space coordinates, given the photogrammetr1c network design

and the precision of the observations. That is, for fixed A and P one usually
seeks, through the selection of an appropriate datum, an optimum form of the
cofactor matrix Q.. Zero-order design is appropriate in photogrammetric net-
works which are not "hung" on existing object space control frameworks, 1i.e.
where the datum information introduced into the network adjustment is not suf-
ficient to introduce a change in shape of the relatively oriented bundles of
rays. Through ZOD an XYZ reference coordinate system is assigned to the
network by the imposition of minimal datum constraints. The zero-variance
computational base of this system requires the implicit or explicit definition
of an origin, orientation and scale for the XYZ cartesian coordinate system.
The datum problem hinges on the fact that as the zero-variance computational
base is altered, so the cofactor matrix Q. of the network parameters changes.
It must be recalled that the primary system observables, namely photo coor-
dinates, do not contain any information about the datum.

Whereas parameters of shape are determined solely as a function of system
observations, and are therefore invariant with changes in the imposed minimal
constraints, object space coordinates relate to the datum, which means that
both X and Qx change with changes in the minimal control configuration. If the
minimal control is to be arbitrarily assigned, Z0D can involve the process of
estab11sh1ng a zero-variance computational base for the XYZ coordinate system
which is optimum in some sense. This procedure typical comprises finding a
"best" form for the cofactor matrix Qy, of either all the XYZ object point
coordinates or a subset thereof. Emphasis is placed on optimizing Q,,, rather
than Q., since the parameters of primary interest are typically object point
coordinates and functions of these coordinates, e.g. deformations, distances,
etc.

The question of which is a "best" form for Q., is much dependent on the user-
specified accuracy objectives for the estabT?shed network. For example, one
case may call for a covariance matrix of the object points which displays a
maximum homogeneity of precision, whereas another may stress the optimization
of variance in a single coordinate axis. The planner should tailor his Z0OD to
meet the prec1s1on criteria laid down. Four approaches are available in this
regard:

Generalized inverses,

Inner constraints,

Arbitrary minimal control via "preferred" points, and
S-Transformations.

The pseudo or Moore-Penrose inverse is the most commonly applied member of the
generallzed inverse fam11y for network design. This solution for x explicitly
yields minimum mean variance for the parameters, i.e.

-2 Gi T+ 02
g, = — tr(A"PA) " = — tr Qx > minimum | (3)

where m is the number of parameters. As has been pointed out, for example,
in FRASER (1982) minimum T3 may not represent a "best" criterion for the ZOD.
This is because all parameters are included in the datum definition, and not just
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object point XYZ coordinates. To achieve a minimum trace for Q.,, exterior
orientation and additional parameters need to be eliminated so the pseudo in-
verse is computed for only a reduced set of normal equations. Given the
structure of most fold-in algorithms employed for the solution of bundle ad-
justment normal equations, whereby the object point vector x, is eliminated,
such an approach can pose algorithmic difficulties. An equivalent, more com-
putationally attractive approach to this so-called "main" solution is the
method of inner constraints (e.g. BLAHA, 1971), which has recently been
applied in close-range photogrammetry (e.g. BROWN, 1982; FRASER, 1982 and
PAPO & PERELMUTER, 1982). In addition to yielding optimum mean object point
precision:

2
- _©o N : .
= 3y tr Q. > minimum (4)

where n is the number of points, a minimum Euclidean norm of the object point
coordinate corrections is obtained. The inner constraints need not apply to
all object points, and the imposition of this implicit minimal control may
simply refer to a chosen subset of the target array (three points is naturally
the minimum number).

In view of the fact that the "main" solution yields minimum mean variance, one
may validly ask whether this free-network approach provides a solution to the
datum problem. For numerous applications it may, and in the case of relative
deformation networks (all points assumed unstable) free-network adjustment is
advantageous (e.g. FRASER, 1983a; FRASER & GRUNDIG, 1984). But, much depends
on the criteria set for Qu, at the ZOD stage. For example, the common, compu-
tationally simpler approach of "fixing" object point coordinates of "preferred”
points to remove the seven (six if distances are observed) network defects of
translation (3), rotation (3) and scale (1) will yield a mean variance G2 for
the object points which is larger in magnitude than that obtained from the -
inner-constraints adjustment. Differences in the precision of parameters (e.g.
distances) derived from X, may, however, be insignificant from a practical
point of view.

Through the use of an S-transformation, introduced by BAARDA (1973), it is
always possible to transform both X, and Qx, relating to one zero-variance
computational base, into their corresponding values for any other minimal con-
straint. For example, after the cofactor matrix of object point XYZ coordi-
nates is computed for a datum of seven explicitly fixed coordinate values, the
corresponding "main" solution for Qy, is obtained simply by applying an S-
transformation. Although the implementation of covariance transformations is
relatively straightforward (e.g. STRANG VAN HEES, 1982), the S-transformation
does necessitate the computation of a full Qyu, matrix. Thus, for close-range
photogrammetric networks with dense target arrays where coordinate variances
and not covariances are sought, it is often computationally more practical to
readjust the network with a different datum rather than apply an S-transforma-
tion. The S-transformation is very applicable, however, when it is required
to transform an ideal, or criterion matrix into one which refers to a specific
minimal constraint.

The impact on object point precision of changes in the ZOD of a minimally con-
trolled close-range photogrammetric network has been illustrated quantitatively
in FRASER (1982, 1983), and the reader is referred to these papers for further
details. Here, only a few important observations from this previously con-
ducted experimental work are noted:
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Changes in Z0D, i.e. in the applied minimal constraint configuration,
not only influence the magnitude of object point coordinate

standard errors, but also the degree of homogeneity of the network
prec1s1on In th1s regard, inner constraints provide a "best" solution,
in addition to yielding maximum mean precision (minimum T).

In both "normal" and convergent configurations, free-network adjustment
can yield higher mean precision than that obtained in networks with
either redundant object point coordinate control, or point-to-point
distance observations. This is an important property given that the
establishment of other than an arbitrary minimal constraint requires
extra surveying work.

An "optimum" minimal control configuration of two "preferred" points
fixed in XYZ and one fixed in Z (or X or Y) is likely to be approached
when the centroid of the triangle formed by the three object control
points is reasonably close to the target array centre, and the tri-
angle's area is a maximum.

For favourable minimal control configurations the variation in the

precision of certain functions of Q.,, which accompany changes in

the datum, can be expected to be somewhat less than the variation

in 3. Th1s is notably the case with point-to-point distance precision.
In conclud1ng this section on Z0D the point must be made that the datum
problem is not independent of the configuration prob]em The extent to which
a change in datum will influence object point precision is very much depen-
dent on imaging geometry. In general, a change in the zero-variance computa-
tional base seems to influence the precision of "normal" networks to a
greater degree than the inherently more homogeneous convergent configuration,
especially in the case of an unfavourable minimal constraint.

FOD - THE CONFIGURATION PROBLEM

The configuration problem or FOD is concerned with the search for an optimal
geometry, given both the precision of the observations, and objectives for
the structure of either the covariance matrix C, or the corresponding cofactor
matrix Q. Thus, this procedure entails finding an optimal design matrix A,
given a weight matrix P, subject to specified criteria for the structure of
Qt. In non-topographic photogrammetry, FOD embraces such aspects as imaging
geometry, the number and location of object target points, camera selection
and the influence of self-calibration in the network adjustment.

Of primary concern is typically the choice of an appropriate imaging config-
uration for a given array of object target points. The usual aim here is to
find a configuration matrix A, which for a given P yields adesired:structure
for Q.. Forexample, the design criterion may be that Qx2 is to be both homo-
geneous and isotropic, i.e. all point error ellipsoids are spheres of equal
radius.

Although its principal component is imaging geometry, FOD also embraces a
number of the well-recognized methods for enhancing object point precision.
These include the adoption of larger image scales and long-focal length photo-
graphy, the use of target clusters around an object point, and multiple
exposures at each camera station. The latter aspect can also be interpreted
as a component of the second-order or weight problem, much 1ike the multiple
measurement of image coordinates. Also, in terms of optimizing precision
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(but not necessarily reliability) the use of target clusters can be consi-
dered as part of the TOD process. A further, important aspect of the con-
figuration problem is the influence of additional self-calibration parameters
(APs) - be they block-invariant or sub-block invariant, coefficients of
general polynomial functions or physically interpretable camera calibration
parameters - on the precision of object point determination. The following
papers address various accuracy enhancement approaches which can be clas-
sified as part of the FOD procedure: KENEFICK (1971), HOTTIER (1976) GRUN
(1978, 1980), FRASER (1980), BROWN (1980), GRANSHAW (1980), TORLEGARD (1981)
and VERESS & HATZOPOULOS (1981). In briefly discussing the configuration
problem it is useful to consider the above mentioned aspects under separate

headings.

Imaging Geometry

The adopted imaging geometry for a network is a central factor in determining
the object point positioning accuracy. A number of authors have highlighted
the well recognized accuracy discrepancy between "normal" and multi-station
convergent imaging configurations. However, in the context of FOD it is not
so much the impact of different geometries on the magnitude of 5. that is of
prime interest, but more the relationship between the standard errors oy,

oy and oy of the object point coordinates. A simple scaling of Qy o can be
achieved through either alternative FOD options or via SOD, but the fundamental
distribution of relative object point and point coordinate accuracies is
established once the imaging geometry is in place.

From the results presented in FRASER (1983), which pertain to the influence
of imaging geometry on the homogeneity of object point coordinate precision,
a few features will be briefly noted. First, for a near-homogeneous distri-
bution of object space precision to be obtained, a convergent imaging geome-
try is mandatory. However, depending on the number of photographs, a con-
siderable range of convergence angles can be tolerated. Also, a range of
convergence angles will produce a near isotropic form of Q,5, but such a
structure cannot be attained from a "normal" configuration. For the majority
of three-dimensional measuring tasks, a near-homogeneous, isotropic Qx> would
constitute an optimal solution to the imaging geometry problem of FOD. As a
further point, it is not surprising that the homogeneity of the precision of
functions of the XYZ coordinates, e.g. distances or coordinate differences,
is generally optimal when a reasonably homogeneous distribution of object
point positioning accuracy is designed for.

Base/Distance Ratio

It is well recognized that an increase in the B/D ratio for "near-normal"
imaging configurations is accompanied by both an improved level of mean
object point precision (e.g. HOTTIER, 1976) and enhanced reliability (GRUN,
1978; 1980). As the base increases, so T, is decreased in value non-Tinearly.
The improvement in precision, primarily in the "depth" or Z-direction, is
achieved because of the more favourable ray intersection geometry. Due to the
restrictive geometry of a "novrmal" network, alterations in the B/D ratio pro-
vide one of the few means for substantially enhancing the distribution of
positioning accuracy.

Number of Camera Stations

The practice of using multi-station photogrammetric networks, as opposed to
single stereopair configurations, is well established in precision non-
topographic photogrammetry. Depending on the imaging geometry adopted, the
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use of additional camera stations can he expected to not only improve
precision, but also to significantly enhance the network's re11ab111ty An
-examination of accuracy improvements which accompany the use of an increasing
number of exposure stations cannot, however, Be divaorced from a consideration
of the corresponding changes in imaging geometry. Additional imaging rays
increase the redundancy in a spatial intersection, and also alter the inter-
section geometry.

Notwithstanding the difficulties of considering in isolation the influence

on FOD of the number of camera stations, one general observation that can he
" made is that for "strong” networks, the accuracy~1mpr9vement obtained over a
two-photo geometry is approximately proportional to m%, where m is the number
of photographs. This implies that if the number of camera stations is in-
creased from two to three a significant improvement in object point precision
can be expected whereas a change from three to four photos is only 11ke1y to
decrease T, by about 20%. The inverse proportionality between G. and mz only
holds approximately, however, and is not applicable to all network designs.
With this fact in mind, it seems reasonable to assert that in the FOD process
more attention should be paid to the imaging geometry, rather than concentra-
ting too much on obtaining a coverage of a certain arbitrary number of pnoto-
graphs, with the restriction of course that a minimum of three intersecting
rays (not in the same epipolar plane) at each object point is highly desir-
able.

Multiple Exposures

The use of multiple exposures at a camera station pr0v1des a practical means
of enhancing network accuracy. In situations where successive exposures can-
not be assumed to be taken at precisely the same orientation and position, an
additional set of exterior orientation parameters is introduced into the net-
work for each successive -photograph. Thus, at the design stage A is modified
and so the process of selecting how many exposures should be taken becomes
one of FOD. However, if the same number of exposures, k, is taken at each
camera station, the influence on network precision is essentially equivalent
to adjusting the single-exposure configuration with a weight matrix P, = kP.
The cofactor matrix is then obtained as

1

Q‘Xk - (&TE_}{_A_)— - k—l(ATEa)-l _ k—l

Q, (5)

where Q, corresponds to one photograph per station, and Q,, to k exposures.
per camera station. Leading directly from Equation 5 is tﬁe relationship

— 1
-k

o, = kKT, ' (6)
Since the use of multiple exposures leads to simply a scaling of the weight
matrix P, the process can be considered as a component of SOD, and a few
further remarks will be made on this design aspect in the section dealing
with the weight problem.

Number ef Points

In bundle adjustments of well designed photogrammetric networks, which do not
incorporate self-calibration, the number of object points has surprisingly
Tittle impact on the mean standard error o, (e.g. FRASER, 1983). Due to this
practical independence of object point precision and the number of target
points, networks which are planned to include hundreds of points can be
examined and optimized at the FOD stage by considering only say 20 - 40 well
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distributed targets. This leads to considerahle savings in the computation
of a representative sz,

Whereas the accuracy attained in a standard bundle adjustment is not signifi-
cantly influenced by the numher of target points, the precision yielded in a
self-calibration adjustment is considerably affected by both the density and
distribution of the object points. In the majority of systematic error com-
pensation models employed for self-calibration, the coefficients of the APs
are expressed as functions of the image coordinates. The self-calibration
process can be thought of as a surface fitting problem, albeit one which is
not independent of photogrammetric resection and intersection. Consider for
example lens distortion. The distortion pattern of a lens is quantified by
the resulting image point displacements at the film plane. Thus, if a func-
tion is required to describe this pattern throughout the entire frame format,
so image points will need to be sufficiently well distributed on the film,
and this in turn impacts on the distribution and number of object points
imaged.

Target Clusters

The use of clusters of targets rather than a single object point has been pro-
posed 3s a practical means of enhancing network accuracy (e.g. HOTTIER, 1976;
TORLEGARD, 1981). 1In the presence of local systematic error influences in the
imaging and measuring systems, such an approach has its merits. For example,
the ability to locate observation outliers (i.e. the internal reliability)

can be expected to be enhanced by using target clusters. However, for favour-
able imaging geometries, the influence on object point precision of an in-
crease in the number of targets, be they clustered or otherwise, is typically
insignificant. At the FOD stage, therefore, the use of target clusters
generally need not be considered in a network simulation, as a representative
Q.o can be derived through the use of single-point targets.

Image Scale and Focal Length

Although changes in photographic scale can modify imaging geometry to a
1imited extent, there is basically a Tinear relationship between scale and
precision. However, whereas an alteration in image scale may have only a
scaling effect on Qyo, a change in focal length (retaining the same mean
photographic sca]eTXcan influence the distribution of precision in the object
space. As the focal length of the taking camera increases so the geometry

of multi-ray intersections tends to become more homogeneous, thus leading to
a reduction in the range of object point standard errors. Coupled with the
enhancement of the homogeneity of object point precision, a further benefit of
long focal Tlength cameras is that they are less subject to the critical in-
fluence of film unflatness (e.g. KENEFICK, 1971). At the network design
stage the Tatter of these two features is perhaps the most important to keep
in mind, although the choice of focal length is most often Timited by both
camera availability and the physical layout of the survey site.

Self-Calibration Parameters

In recent years a considerable amount of research attention has been directed
to the relationship of APs to network precision (e.g. GRUN, 1978, 1980;
BROWN, 1980; FRASER, 1980, 1982). Due to the numerous additional parameter
models applied and the various special considerations that are warranted when
APs are sub-block invariant, photo-invariant or a combination of these, it is
difficult to establish general rules that will be effective in FOD. Never-
theless, a few characteristics of self-calibrating bundle adjustments warrant
attention.
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The first feature worth noting is that in the presence of high inter-
correlations between APs, and strong projective coupling between APs and
exterior orientation elements, object point precision and reliahility are
liable to be degraded. High correlation comes about through over-
parameterization, e.g. polynomial terms of too high an order and the inclu-
sion of APs which are not statistically significant. Care must be exercised
in simulating networks which are to be adjusted by self-calibration. For
example, if it required to examine the influence on Qx» of carrying both
interior orientation and decentering distortion parameters - which are often
highly correlated - it is necéssary to simulate an appropriate distortion
pattern. In an examination of how well a distortion pattern can be modelled,
the "error surface" must be input into the photogrammetric system.

As regards network geometry, it is well recognized that the determination of
statistically significant APs is dependent on the provision of both a suit-
able imaging configuration and an adequate distribution of object points.
For example, the recovery of the interior orientation parameters x,, yo and
f in a "normal" network requires a target point array which is well distri-
buted in three dimensions, and it is always enhanced by having non-constant
(preferably mutually orthogonal) kappa rotations. As a rule, object point
precision is not degraded so long as all APs are statistically significant.

SOD - THE WEIGHT PROBLEM

The weight problem or SOD involves the search for an optimal distribution of
observational work, given both a network design and some ideal structure of °
Ci. This problem is characterized by an unknown P, and fixed A and Q,. In
photogrammetric network design, a structure for the weight matrix of

P = 0721 is typically adopted. The quantity. o® is the global variance of
image coordinate measurements. Thus, SOD involves only an optimization of
the scalar value o. There are effectively three methods available for in-
creasing the precision of image coordinate observations: the use of a higher-
precision comparator, multiple image coordinate measurements, and the use of
multiple exposures, as outlined in the discussion on FOD. Since most high-
precision photogrammetric surveys employ comparators with accuracies in the
range of 1 - 2.5 um there is typically not much flexibility afforded in the
selection of a comparator as far as SOD is concerned.

Of the two remaining approaches the use of multiple exposures is, in the
author's opinion, a more effective means of scaling ¢ to some required value.
In theory, the effect on Q., of observing an image point k times is equivalent
to a single observation of that point on each of k images taken at the same
exposure station. However, the latter approach has one distinct advantage,
that being that systematic error components which change from exposure to
exposure (e.g. film deformation) are averaged over the k images. It is also
possible, of course, to combine the two methods, e.g. multiple-readings on
each of the multiple exposures.

TOD - THE DENSIFICATION PROBLEM

In 1ight of the fact that object point precision is largely independent of
target array density in networks with "strong" geometries, the densification
probTem does not seem to arise. Effectively, the densification problem is
solved at the FOD stage, and TOD generally need not be separately considered
in a photogrammetric network optimization.
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DESIGN THROUGH SIMULATION

Computer simulation of non-topographic photogrammetric networks has been
successfully employed in design optimization for some time. But the develop-
ment of powerful minicomputers and graphics terminals has given a consider-
able boost to interactive network design, to the point where simulation and
adjustment software packages are becoming commercially available. One such
package, which is briefly discussed here, is the STARS system developed by
Geodetic Services, Inc. (e.g. BROWN, 1982). The process of photogrammetric
network design optimization through computer simulation can follow a number
of approaches. One practical procedure is summarized by the flow diagram
shown in Figure 1. Once the accuracy specifications have been established

an observation and measuring scheme is adopted. This procedure may entail
the selection of a particular camera or cameras for the survey, the comparator
to be used, a first approximation of the imaging geometry, e.g. four-photo
convergent configuration with scale 1 : S and all points appearing on all
images.

The following equation can prove usual in this process:
g, =qSc (7)

where S is the scale number, ¢ the image coordinate measurement standard
error, and q a factor whose magnitude varies usually from about 0.5 to 1.2
for “strong" network designs. Equation 7 can be expected to yield a reason-
able approximation of mean positioning accuracy. Appropriate values of the
factor q are usually selected on the basis of results obtained in previous
work. Alternatively, a coarse estimate for g could be based on the values
obtained in the simulated networks considered in FRASER (1983).

Following the establishment of a general observation scheme the datum and
configuration problems are addressed, and having completed a detailed ZOD

and FOD the precision of the network is examined. If the specifications for
an ideal Qx2 are met and/or if the network is deemed to be optimal, the
design is complete. Should the simulated network fail the test of optimality
with respect to the specified accuracy criteria, then the question of whether
meeting specifications is a matter of scaling Qy, should be asked. If such
an approach is practicable, the SOD process (multiple exposures and/or mul-
tiple image coordinate measurements) can be followed until the accuracy ob-
jectives are obtained.

If the structure of Q,, (e.g. its lack of homogeneity) causes the network to
fail the test of optimality then the SOD is bypassed and either the network
design is revised, principally through the FOD process, or the general
observation and measuring scheme are completely redesigned. In practice this
whole procedure can be carried out interactively at the computer terminal.

THE STARS SIMULATOR

The graphics-based network simulator developed at Geodetic Services, Inc.
forms an integral part of STARS, a proprietary turnkey system for close-range
photogrammetry. (STARS is an acronym for Simultaneous Triangulation And
Resection System.) As well as incorporating the design optimization possi-
bilities detailed in the previous sections, the STARS simulator also allows
the planner to answer certain questions of a practical nature, e.g. whether
all targets of interest can be seen from a particular camera station. This
package facilitates the generation of trial data sets, for which an error
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Fig. 1: Flow diagram for Fig. 2: Camera station view
photogrammetric design generated with the STARS
optimization. simulator.

propagation is computed and network precision obtained via a self—ca11bratingi
bundle adjustment.

In commencing the simulation process, one first specifies the coordinates of
object points of interest. Then, in a sequential fashion, each proposed
camera station location is examined. The selected principal distance for the
camera occupying that station is input, as is the frame format size. Fol-
Towing this the computer automatically optimizes the camera aim point (if
required) and projects the set of targets provisionally seen from that camera
station onto the terminal screen, as shown for example 1in Figure 2. Changes
can be made interactively to the design, as warranted. Options include the
ability to "zoom" the camera in and out along the pointing axis, automatic
focussing and depth of field computation, and a camera roll capability. In
addition, there are options available to specify viewing window size (to show
points outside the frame format) and, for plot readiability, point and Tlabel
plotting rates.

Once the camera setup has been established, image coordinate measuring
standard errors are input and the object point positioning precision is
computed. At this point, one is essentially at the first decision stage of
the flow diagram shown in Figure 1. Based on whether the network meets the
specified accuracy objectives, the planner can either modify the design
through the simulator or stop if an optimal design has been obtained. It may
even arise that the simulation will indicate that the desired accuracies
cannot be attained under reasonable circumstances.
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Through the simulation exercise a photogrammetric project can he comprehensive-
1y planned. As a further benefit, the STARS simulator is set up to be used
essentially as a teaching tool such that non-photogrammetrists can quickly
become proficient in photogrammetric project planning.

CONCLUDING REMARKS

This paper has dealt with design aspects of photogrammetric networks, and the
interconnected processes of zero-, first-, second- and third-order design

have been outlined. From the treatment of the different design classifica-
tions discussed, it should not be implied that photogrammetric network optimi-
zation amounts to a formal step-by-step procedure through Z0D, FOD and SOD.
The flow diagram presented in Figure 1 describes one general scheme, but more
often than not other factors such as previous experience and intuition will
play a central role in network optimization. In any computer simulation, how-
ever, it is useful to keep in mind the general design characteristics discus-
sed. As is demonstrated by the STARS simulator, a comprehensive CAD technique
can be employed effectively in photogrammetric network design. Indeed, for
perhaps the majority of high-precision industrial photogrammetric applications
design through simulation becomes mandatory, and not just desirable.
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