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ABSTRACT -

The space intersection method which bases on the collinearity condi-
tion is generally used to compute the object space coordinates of a
point which is imaged in two common photographs, in the analytical
photogrammetry. Since the collinearity condition is expressed by non
-linear equations, these equations are commonly linearized by the
help of serial expansion, and generally Taylor's method is preferred
In this case, this method requires iteration.

In this study, ‘the collinearity equatins were linearized without

using the conventional serial expansion, and the object space coordi-
nates of the photographic points were computed by means of this method.
In addition the developed model is tested by means of the simulati-

on method.

INTRODUCTION

The first of two fundamental steps of the aerial and terrestrial pho=
togrammetry is the space resection. By carrying out this process, the
object space coordinates of the camera perspective center, exposure
station, and the rotation of the photographic coordinate system accor-
ding to the object (geodesic) coordinate system are determined. The
second step is the space intersection. By performing this step, the ob-
ject space coordinates of the points, which correspond to the same ob=
ject point imaged in two or more photographs, are computed.

In the analogue restitution (instrumental) both of the processes are
carried out on the analogue plotting instruments via some optical and
mechanical treatments, namely the results of relative and absolute
orientation. However, in the analytical photogrammetry the all of the
restitution is performed numerically.

In both space resection and intersiction, the analytical process can

be carried out by employig various mathematical methods which are ba-
sed on the principles of projective or solid analytical geometry. The
optimum solution (Veress and Hatzopoulos, 1979) is the collinearity
condition. The basic principle in the collinearity condition is that

a certain object point, its image on the photographs and the perspec-
tive center of the camera (the frontal point of the camera lens) lie
along the same straight line (Finsterwalder and Hofmann,1968; Wolf
1974). The non-linear equations systems are faced when the colllnearlty
condition is expressed by means of the analytical equations.
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Up to the recent studies, these condition equations have been common-
ly linearized using the serial expansion, and often Taylor's therom
has been preferred. Although there are some available direct linear
applications (Schut, 1960; Oswal and Balasubramanian, 1948) in perfor-
ming space resection, for computing the object space coordinates of
any ground point the collinearity equaitions have been employed after
serial =~ expansion in space intersection, (Veress's the vector met-
hod is excluded, Veress and Sun,1978; Veress and Hatzopoulos,1979).
DLT (Abdel-Aziz and Karara, 1971, 1974; Marzan and Karara, 1975) and
the 11 Parameter solution ( Bopp and Krauss, 1978) are linear solu-
tions for a non-linear problem, but the specific aspect of their
studies is the coverage of the calibration of non-metric cameras. Furt-
hermrore, they depend on the 11 transformation parameters in deter-
mining the object space coordinates of the points.

This study is completely and directly based on the collinearity equ-
ations and these equations are linearized without using the tradi-
tional serial expansion, and the assumption of using a metric camera.
.The object space coordinates of the camera perspective center and the
elements m, ., of the orthogonal transformation matrix can be obtained
by means of“using the computation of one of the linear or non-linear
method. Another way of obtaining the above mentioned parameters is the
direct measurement of all of them on the field (see, Erlandson and
Veress, 1974,1975) or the measurement of some of them on the field
and obtaining some of them by calculation (see, Erez, 1971; Branden-
berger and Erez, 1972; Veress and Sun, 1978). Above mentioned cases
may change due to the properties of the work, researcher and the
available conditions. '

LINEARIZATION OF THE COLLINEARITY EQUATIONS BY A
SIMPLE METHOD

The object point, its image on photographs and perspective center all
lie on the same straight line. This cese is expressed by the colli-
nearity equations which are the basis for the computation of object
space coordinates of points in photogrammetry. These condition equa-
tions are formulated according to the shown coordinate system in Fi-
gure 1, as follows:

y my g (X=X )+my, (Y=Y, )+ 5 (2-2,)

Xij 3 (1.a)

map (X=Xp) gy (Y=Y, ) 4y (222, )
m21(X-XL)+m22(Y-YL)+m23(Z-ZL)

; (1.b)
myy (X=X ) Amg, (Y=Y ) #my 5 (2-2))

yij = f

where the index i refers to any ground points which are imaged on two
overlapped photographs, j refers to any exposure station.

X,y = refined photo coordinates of a point
f = camera principle distance (calibrated focal length)
m's = elements of the orthogonal transformation matrix in

which the rotations omega,phi,kappa of the photographs
are implicit.
X,Y,Z = object space coordinates of any point
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XL’YL’ZL = object space coordinates of the camera perspective center
(exposure station).

Besides refined systematic errors, measured quantities will contain
random errors v_, v _ respectively; then equations (l1.a) and (1.b)
become as follows:

MIX
X +v = £ (2.a)
M3X
M2X
y+v = f (2.b)
y
M, X

where Ml = (m11 m 5 m13)

My= (my; my, myg)

=
|

3 = (Mg 32 mss)
(X=X, Y=Y, z-z

X'_)
1}

L)

Figure: 1. Geodesic and photographic coordinate systems

Then the equations can be written as '

M1X
v, = T - % (3.a)
M3X
M2X
v = f -y (3.b)
Y M,X

If x and y are multiplied by M3X in above equations, we obtain




o o X - MK (4.a)
X
M3x
v = £ MX - yM X (4.b)
y M. X

If the notations M, Mz; M
and (4.b) one gets” the

39 X are substituted in equations (4.a)

_ fmllx-fmlle +fm12Y-fm12YL +fm13Z-fm132L -xm31x+xm3lXL-xm32Y+
v, =
XMap¥y —XMggZixmagZy
(5.a)
3, (X XL) +m32(Y YL) +m33(Z ZL)
v - fm21x-fm21XL ffméZY-fmzzYL’+fm23z-fm23ZL —ym31X+ym31X£ym32Y+
y

YRy ¥ =Yg aZ¥ymg 7,

may (X=Xp) Amg, (YY) 4my g (2-2))

(5.b)

equations,

If the equations (5.a) and (5.b) are arranged according to the cons-
tants and variables, we can write as follows ' ’

fm, . -xm fm_ _ ~xm fm, _-xm fm_ _ -xm
11 31 12 32 13 33 11 31
v, = X (=) ¥ () 2 () - X ()
M M M M
3 3 3 3
Ly (fmlz'xm32) . (’5"313“m33 :
- i ———— .y -———___).
L M L M (6.a)
3 ' 3
fm__ -ym fm_,-ym fm,_ _-ym fm,_, -ym
21 31 22 32 23 33 21 31
v, = XT—) Y () 2 (— 2 ) = X (= y
‘ M3 M3 M3 M3
fm_ _-ym fm, . -ym
22 32 23 33
(R g 2223 (6.0)
M M
3 3

where M3=m31(X-XL)+m32(Y-YL)+m33(Z—ZL)

For each point i in photo j, if the equations (6a) and (6.b) are
written in matrix form, we obtain

62




63

Vg 31, %, 2 || X |?1., 22, 2 X
ij ij “ij Tij ij “ij  Tij
= Y Y, (7)
v, b, b, by ||z]|b b b z,
ij ij “ij ijl: 1] ij ij
fmy | =%¥Baq fm,,-ymyy
where a. = =———————22 b, =
li . ﬁ li . ﬁ
3 3 j 3
g o =Xmg, fmy,-ymg,
PR S L S— b, = ———= (8)
Zi . ﬁ 2i . ﬁ
J 3 J 3
X = S T N fmyg3-yiag
5 = 35 =
M, M,

Consequently the matrix equation (7) is the linear form of the
non-linear collinearity condition equations, and the linearization
has been achieved without using the tredational serial expansion.

COMPUTATION OF THE OBJECT SPACE COORDINATES

The equation (7) contains only three unknowns which are the geode-
sic coordinates X,Y and Z of a ground point. Since these three un-=
knowns can be computed by a least three equations, there have to be
at least two overlapped photos in which the point i is imaged. If
there are n photographs used in the solution, we will have 2n number
of equations (7) to compute the unknowns X,Y and Z. The number of the
redundant observation equations will be R=2n-3. For point i in photo
j the pairs of condition equations (7) can be written as

Vi' = Ai.‘Xi - L, ~ ' (9)
where J J J '
vel e oanl T %2 %l Sl U e ST 11 e %
= ; = T X= - =
bl b2 b3 Yi? b1 b2 b3 YL
A

Vij = 2%1 correction vector of the image coordinates
Aij = 2x3 matrix of the coefficients of the unnknowns
Lj = 2x1 vector of constant

In generally speaking, we can write the following equation:
Vv =A Xi - L (10)
In this case, for a least squares solution, it requires

viwv = x"ATwax - xTaTwr - LTwax + LTwL (11)
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where W = weight matrix for the condition equations.

vl
X

Therefore least squares method will result in

= ATWAX - ATWL =0 (12)

x = (aTwa) aTwL
=N"*. n : (13)
where T
N = ATwaA
n = ATwL

To obtain, the sum of the residuals squared, we premultiply equation
(12) by X° and substitute the results into (11), then we get

VTWV = L¢WL - LTWAX (14)
The standart error of the unit weight is computed as follows
2_ _vwy |
© 2n - u
VTWV 1/2
m_ = (——) (15)

R

= number of photos used in the solution
= number of unknowns
= degrees of freedom

where n

moe

The standard error of the unknowns can be also computed as follows

-1)1/2

m, = mo(N (16)

X

COMPUTATION OF MB
When the coefficients which are represented in equations (8) are
examined, it will be seen that the quantity M,, which forms the de-
nominator of the coefficients, contains the uhknowns X,Y and Z, There-
fore, the approximate valuesof them must be computed. For this com-
putation the equations (l1.a) and (l.b) can be used directly. If we
rewrite the equations (l.a) and (1.b) clearly, remove the parenthesis-
es and arrange them according to the unknowns, we will get

X(fmll-xm31)+Y(fmlz-xm32)+z(fm13-xm33)-XL(fmll-xm3l)-YL(fmlz-xm32)—
2y (Fmyg-xmyg) =0 (17.a)

X(Fmyq =ymyy ) +Y (£, 5 =ymy ) ) 42 (£, 5 =yMy o) =X (£, =ymyy ) =Y (fmy,=ymy, ) -

2y (Fmyg-ymy5) =0 (17.5)




Themn if the long terms are expressed by a!' and bt
equations (1l7.a) and (17.b) become as follows:

] .4 ¥ ¥

¢ 1
alx +a2Y +a32 -(ale +a2YL +a3ZL)=O

4 1 1 4 1 ] 4 4

b1x4+b2Y +b3z -(ble+b2YL +b32L)=O

where ' '

a) =fmy ) -xmg, by =fmy, -ymy,
¥ 1]

3y =fmy,-xm,, by =fm,,-ym,,
1] ]

dy STmy -xmg g by =fm, -ym,,

For each point which is imaged at
pairs of equations can be written

notations, the

(18)

least in two common photos, two -
from each photos similar to equ-

ations (17.a) and (17.b). We cah obtain the presolution of unknowns
as using any three of these equations. Then these values are subs-

tituted into M3 and the coefficients

DETERMINATION OF THE WEIGHT COEFFICIENTS

ai and bi are determined.

If the adjustment will be performed with respect to the weighted
measurement, various methods are followed in determination of the

weight coefficients. Some researchers

inverse of distance, which is distance between the

(Erez, 1971) accept the
perspective cen-

ter and the respective object point lying on the same ray, as the
weight coefficient. Some other researchers (Marzan and Karara, 1975)
use the law of propagation of variance which requires the long com-
putations, to determine the weight coefficients. In some studies
(Erlandson and Veress, 1975) the weight coefficients have been
considered as unity. Marzan (1975) proved that the accuracy of

the object space coordinates of points is a function of configu-
ration, according to him configuration is defined by three items

as follows: (1) base, (2) object distance,
of the two camera axes.
of our simulation test have indicated that the
and the object distance have

(3) the convergence

As it will be mentioned later, the results
parallactic angle
great effect on the accuracy of the

object space coordinates. In this case, the weight coefficient can
be computed as follows: if it applies to the equations (7),the

law of propagation of variance separately,

F = a m +a_m

1M ey tagm, -ajm

-a, m_ -a_m
1 XL 2 YL 3 ZL

Fy = blmx+b2my*b3mz‘blme'bszL'bsmz

%

L

\S)

+a2m +a2m +a2m2
3 1 2y

<N

a2m2+a2m
1'X "2

Fo

N

»
l"P<N

L L

Ce

[\V]

2 2 2 2
+b2m +b_m_+b_m %meY +b

b4 . L L

5N
N
wn o
N

N

2 2
mF = blm

(19)

(20)
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If the equations (20) are arranged , one gets

W2_ 22 2 2 2 2 2 2 2
= -+ &
x7 Bl My )3 (my my JFag(ng "z, ) (21)
2
2. 2 2 2,2 2 2,2 .2
m}'«‘Y-- bi (mX +mXL )+b2 (mY +mYL )+b3 (mZ +mZL) '

2 2 . . .
where m_, m2, m the variances of the object space c¢oordinates-
which are determined by the space intersection, and they are computed
via Marzan's equations (12), (1975) as follows:

2_ _1 D m
% Z < (1-1/2tan@sing)coseg
1 ;
2 D
S 22)
2_ ) ‘ m,.
mz"@ c tanGcosg@ +2sing

In the above equations:
D= object distance
c= principle distance of the camera
m= the plate caordinate error
@= the convergence angle
©= the overlapped angle (from tan@=—%—)

Thus, the factors (object distance and convergency) which have the
greatest effect on the accuracy of the object space coordinates of the
points are introduced into the computations of the weight coeffici-
ents.In this case the weight coefficients become

2
w 0 l/ o 0
. mPX

o 2
0 w ' 0 l/mF
1 v

SIMULATION STUDY

In arder to assess the accuracy and appropriate of the developed
model, it was tested via the simulation method. Several simulation ex-
periments were performed to find the optimum geometric configuration
and the number of plates which effect the accuracy.

The simulation experiments start by generating fictitious photograph-
ic coordinates which are obtained in a mathmaticalmanner by using di-
rectly equations (la) and (1.b) . Assumed model is based on a mathema-
tical test area which has dimensions of 90x90 meters. It includes 100
ground points which have the geodesic coordinates. The locations of
the ground points are according to a grid pattern in order to cover
the whole test area. The simulated cameras have been selected as wWild
P32- which has an image fdrmaté5x90 mm (picture format 6€x80 mm) and
focal length of 64 mm. The mathématical test area is photographed
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from two and four different camera stations. The convergency is
preferred to preservation of - ratio of the base -distance in taking
the photographs,since the convergency has great effect on the accuracy
of the intersected coordinates of an object point (Kenefick, 1971;
Hottier, 1976). Consequently the used parallactic angles and the ex-
terior orientation elements are given in Table 1.

Table 1. Parameters used for simulation study

Comb.|Station| The Exterior Orientation Elements Parallac.
. no no. Xm ¥Ym Zm Omega phi Kappa Angle
1 1 980 145 2150 09 w209 oY 209

2 1130 145.5 152 0] +20 o . :
2 1 975 151 175 o} =30 0] 60
2 1150 152 176 O +30 0
3 1 970 145 225 o) =40 0] 80
2 1130 145 226 0] +40 0O
4 1 825 183 150 0] =50 o) 100
2 1250 164 152 0 +50 0O
5 1 970 145 2238 0 40 (O} 20
2 1130 145 226 0] +40 0]
3 975 151 175 o =30 0] éO
4 1150 152 176 0 +30 (o}
a1 1 980 145 150 0] =20 0 40
2 1130 145.5 152 0 +20 0
3 900 151 200 0] =40 0] 80
4 1180 152 201 o) +40 0
7 1 980 145 150 0 -30 0 60
2 1130 145.5 152 0] +30 0]
3 900 151 200 0 =40 0 80
4 1180 152 201 -0 +4.0 0]
8 1 850 175 200 0 =50 0] iOO
2 1132 176 201 0 +50 0]
3 825 183 150 0 -50 0] 100
4 1250 164 152 0 +50 O
9 perturbed 2. combination
10 perturbed 4. combination
11 ‘ perturbed 8. combination

After computaetion of the fictitious image coordinates, the lens dis-
tortion error was introduced to these coordinates. The average lens
distortion coefficients are listed in Table 2. For this purpose, for
some certain points, the lens distortion values were taken from the
calibration data of a Wild P32 camera;, then the lens distortion cur-
ve was obtained as expressed by the following equation:

7

3 5
Ar = Klr + K2r +* K3r + K4r

where ar is the value of radial displacament of a point in a photog=-
raph due to the lens distortion. Ki are distortion coefficients. r is
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the radial distance from the principal point to the photographic
image point. As no significant improvement in the accuracy was ga-
ined by adding the term K, (Karara, 1980) it was omitted in our
computing the lens distor%ion coefficient. As the most significant
distortion caused by the camera lens is generally symmetrical ra-
dial lens distortion (Wolf, 1974; Veress and Hatsopoulos, 1979),
it was taken into account for cohmputations oniy.

For the simulatinnstudy, first the exterior orientation elements

of each camera namely the object space coordinates of the camera and
the rotation elements omega,phi, kappa were assumed fixed. The object
spaca coordinates of the points which are included in the test field,
were then obtained by using the develcoped model. In this run, first
two camera stations were used in order to intersect the points. The
parallactic angles were chosen as 40,68, 80 and 100 grads, correspon-
ding to the combinations No. 1, 2, 3 and 4 respectively. Then four
camera stations were employed to compute the,geodesic coordinates of
the points, given as combinations No. 5, 6, 7 and 8. The parallactic
angles were also preferred as 80- 60 40-80, 60-80, 100-100 grads res-
pectively. :

In the second step, the object space coordinates of the ground points
were obtained using perturbed exterior orientation elements of each
camera, by employing equations (7), given with combinations No. 9, 10
and 11. The magnitudes of the perturbations were determined greater
than Veress's specifications (Erlandson and Veress, 1974, 1975). In
this case, the object space coordinates of the camera perspective
centers were perturbed as + 5 cm. and the orientation angles omega,
phi and kappa were perturbed as # 15°C€ for the combinations 9, 10,

11 respectively. Still there was no decrease @mn the accuracy. The
final results of all combinations are given in Table 3.

Table 2. Average lens distortion coefficients

K, = 0.31908724x10-3
K, = -0. e;3o47551x10'6
K, = 0,24266095x10"°

EVALUATION OF THE SIMULATION RESULTS

There are different ways of analysing the accuracy of the photog-
rammetric system. Since the geodesic coordinates of all points

in the test area have been predetermined, these coordinates can be
assumed free of errors. In this case, the quantities S S
which are computed by means of differences between the geoge51c
coordinates and the computed photogrammetric coordinates, represent
the obtained precision much better. The mean square value of the

differences SX; Sy, Sz are expressed as follows:

s of Vi Vxi < o VeiVysi < - Vz2:V24
X n Y n Z n
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where n is the number of the groumdpoints used in analysing; V

V.,. V_. are differences as follows:
Yi, Zi

Xi?

in: Zs - Zp

where s refers to the simulated geodesic coordinates and p refers
to computed photogrammetric coordinates. The position error is also
''''''' : as follows:

[z =2 =2
Sp-J;; *Sy *S;

These quantities are given in Table 3, according to the obtained fi-
nal results of the simulatinon study. The above values S_,, S.,, S, and
S _are same the guantities RX, RY, RZ and RXYZ respectiVely, deVised
by Hottier (1976).

Table 3. The final results of all combinations

Combi .
no SX mm SY mm SZ»mm Sp mm
1 9.6 3.7 124.0 124.4
2 11.7 3.2 95.2 96.0
3 10.1 3.1 55.6 56.6
4 9.3 0.6 12.4 15.5
5 8.8 3.7 40.6 41.7
6 6.9 1.0 51.2 51.7
7 6.1 0.4 15.6: l6.8
8 5.4 1.2 54.0 54.3
9 52.4 8.1 50.7 73.2
10 10.8 2.3 18.9 21.9
11 10.3 2.7 58.9 56.9

As it can be seen from the Table 3, according to the obtained final
results the mimimum position error is proveded by the combinatien

No. 4 and 7, due to the maximum parallactic angle in these combinati-
ons. This is a normal results since for the special convergent case
where the camera axes are directed towards the mean plane containing
the targets, the optimum configuration is attained when the convergen-
ce is equal to 50 grads (Marzan, 1975). The combination No. 5 and 10
also provide good.. results, as we have used four stations and greater
parallactic angle relatively in order to intersect the points. Alth-
ough the exterior orientation elements of combination No. 10 were per-
turbed, still the results are very good. However, all combinations
provide very good results for the X and Y coordinates while only some
combinations provide slightly greater differences in the Z direction.
This is due to two reasons: in the combinations where differences in .
Z coordinates are great either the parallactic angle is small or the
exposure distance is somewhat greater. The increasing the number of
station does not change appreciably the accuracy in Z coordinates,
namely the incraesing the number—of plates from two to 3, or more,
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Although the object distance influences the accuracy of the results,
the convergence has greater effect than the object distance on the
accuracy, especially on the Z direction. This case is seen from the
combinations No. 1 and No. 4 in Table 3. Both of the combinations ha-
ve the same object distance but different parallactic angle.

" A conclusion from the above analysis that the chosen geometric confi-
guration, namely parallactic angle and the object distance affect the
accuracy of the results. According to the results of the simulation
study, the parallactic angle has the maximum effect on- the accuracy.
The taking distance and the number of station have less effect than
the parallactic angle.

In order, to compare the other methods with the developed model in
this study, the object space coordinates of the test points were com-
puted by means of the vector method by developed Veress (1978, 1979).
Data of the combinations of 1, 2, 3 and 4 were used in these computa-
tions without changing. The obtained results are given in Table 4.

Table 4. The results of the Vector Method

Combi. Developed Model

no. X mm S, mm S, mm S mm S
Y Z P p mm

1 9.0 3.8 126.7 127.1 . 124.4

2 13.4 4.6 88.6 89.6 96.0

3" 9.0 3.1 58.2 59..0 56,6

4 5.0 0.6 16.0 16,8 15.5
CONCLUSIONS

Two basic principles on which the analytical photogrammetry depends,
are the collinearity and the coplanarity conditions. The optimum con-
dition ( Veress and Hatzopoulos, 1979) is also the collinearity con-
dition. Generally, this mentioned condition is preferred for computa-
tion of the object space coordinates by means of the space intersecti-
on. Since these condition equations are non-linear, they have been
commonly linearized via traditional serial expansion. Because of the
large numbers of intermediate treatment the computation time is long
as well (see, Bopp and Krauss, 1978). Since the computation is done
applying approximate values to the unknowns quantities in serial ex-
pansion, iteration is required. In this case the number of iterations
vary according to the appopriacy of the applied approximate values
(Wolf, 1974).

In this study, the collinearity equations were linearized without
using the conventional serial expansion. This developed model has
the following properties:

1. The number of the intermediate steps are minimised during the per-
formance.

2. Applicabilty in the programming of the mathematical expressions
is straightforward and the solution time is short.
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3. This method can be used in space intersection and resection.
4, This model does not require any iteration.

5. Asimple way was used for the calculation of the presolutions of
the object space coordinates of the points.

6. The precision of the calculated approximate coordinates of the po-
ints does not effect the accuracy of the results.

7. Under all these conditions, the accuracy of the results does not
decrease.
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