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1. Introduction 
Recent advances in photogrammetry may be characterized the 
introduction of technology into all photogrammetric 
procedures. The in such procedures, the primary data 
acquisi ,plays an important role in this development, 
because the transformation of a classical photography a 
computer readable format a time-consuming and costly pro­
cess. For this reason the substitution of the photo-chemical 
layer by photo-electrical sensors is the subject of current 
research. The three-line scanner and the airborne laser pro-
filing system are two cal examples of the new sensor 
technologies which are mentioned here as the background to the 
studies presented in this paper. 

Comparing modern scanners with conventional photogrammetry the 
main principles become obvious : the scanners provide less 
information per exposure, which must be compensated by a higher 
exposure rate. In consequence the orientation para-
meters of the scanner platform must be determined th a 
rate. Closely connected to this point is the problem of a weak 
geometry of the scanner data. Single spot laser scanning repre­
sents an extreme. When only a single measurement is executed at 
every point of time, no geometrie redundancy is obtained. Then 
the determination of the exterior orientation parameters is not 
possible the conventional, indirect manner with the help of 
terrestrial control points. In s case the exterior orienta­
tion parameters must be directly measured by additional devices 

th a sufficient accuracy. These brief arguments explain why 
the direct measurement of the exterior orientation parameters 
of a modern sensor platform and their considerat in the 
whole evaluation process is indispensable. 

s paper presents a mathematical model describing the 
and stochastical properties of any time-dependent parameter. 
The evaluation of measured data takes full advantage of s 
model for the solution of aseries of problems such as : sto­
chastical description of the measurement process, filtering and 
smoothing of observations, detection of gross measurement 
errors, stochastical description of the filtered data. To sum­
marize, the dynamic modelling of measured exterior orientation 
parameters provides filtered data th their stochastic proper-
ties for input into further of sensor data. 

The measured orientation parameters represent a trajectory of 
the sensor atform, which is disturbed by the observation 
errors. As the observation errors are unknown, we are unable to 
reconstruct the true track of the sensor platform. An approach 
to the true movement will be found the of a 



model, which is built up he re by the application of autoregres­
sive integrated (ARI-) processes. The time-characteristic of 
each orientation parameter will be modelIed by a specific 
representation of an ARI-process. 

In chapter 2 the theoretical background of the time-series 
model will be outlined. Chapter 3 will present some applica­
tions of the theory : 1. modelling the position parameters of 
an aircraft flight measured by the Global Positioning System 
GPS, and 2. modelling the attitude parameters of an aircraft 
and of aspace shuttle measured by an Inertial Navigation 
System INS .. 

2. Theoretical background 
2.1 Autoregressive integrated processes 
Autoregressive integrated (ARI-) processes are a widely applied 
class of stochastic processes for various kinds of time-series 
(Haykin 1979, Kay and Marple 1981) .. 

An autoregressive (AR-) process of order p describes a statio­
nary time-series Xt by 

p 

Xt == - r ai" Xt - i + et v (et) == Oe :2 (1 ) 
i = 1 

The time-series considered in our applications are generally 
not stationary. These time-series have to be transformed into 
stationary time-series by the elimination of trends. A usual 
way is to take derivatives of the time-series. The autoregres­
sive integrated process of order (p,d) is achieved if the d-th 
derivative of the original time-series can be described by a 
stationary AR(p) process. Formally, the derivation can be ex­
pressed by an additional number d of process parameters ai in 
eq. (1). Then the ARI(p,d) process fully describes the dynamic 
behaviour of any orientation parameter by a number of (p+d) 
process parameters ai and by the variance Oe :2 of the prediction 
errors. 

2.2 The filtering algorithm 
Two kinds of equations build up a Gauss-Markov model to es ti­
mate the filtered time-series Xt from the observed series yt 

E (Yt) == Xt 
p 

E (et) == 0 == Xt + r ai" Xt - i 
i = 1 

V (yt) == On 2 

v (et) == Oe :2 

Eq. (2) expresses the observation process with an :2 being the 
variance of the observation noise. Eq. (3) presents the ARI 
model to which the unknown time-series Xt has to correspond. 

(2 ) 

(3 ) 

The estimation of the filtered time-series Xt presumes the 
knowledge of the stochastic part of the Gauss-Markov model, 
i.e. the variances On 2 and Oe 2. As the variances in general are 
apriori unknown, they must be estimated by applying the 
variance component estimation (VCE) technique. The formulation 
in the frequency domain published by Förstner (1984) is recom­
mended for our application. 
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Together with the unknown ARI process paramters ai we obtain a 
highly nonlinear estimation problem which can be solved in an 
iterative computation scheme (Lindenberger 1987). The condi­
tions to be fulfilled by the data for successfull solution of 
the GM model and the VCE are mentioned in the same paper (e.g. 
the variances On 2 and Oe 2 have to be of same order of magni­
tude) . 

Gross errors in the observations would disturb the validity of 
the GM model in eq. (2). These gross errors are automatically 
detected and are taken into consideration by individual weights 
in eq(2}. The weights are calculated following the robust esti­
mation theory (Danish method, Krarup et ale 1980). On the other 
hand, a robust treatment of eq. (3) reduces the influences of 
edges and discontinuities in the data, which disturb the ARI 
model. 

2.3 Capability of the algorithm 
What are the main results from the algorithm ? Under the 
assumption that the true trajectory of the sensor platform can 
be modelIed by an ARI-process, we obtain a filtered data set Xt 

which is the most probable representation of the true track. 
Together with the estimated ARI process parameters, several 
demands of further evaluation of the sensor data will be 
satisfied. 

In addition, the ARI-model yields important results, relevant 
for the analysis of the stochastic model. The estimated vari­
ance of the observation noise On 2 describes the observation 
process. The variance of the prediction errors Oe 2 gives a 
fidelity measure how weIl the the ARI-model is suited for the 
real physical process. The inversion of the normal equation 
system out of equations (2) and (3) provides accuracy criteria 
of the filtered data set, especially the variance of the fil­
tered data ox 2 and the autocorrelation coefficients r(h). It is 
emphasised here that all stochastic results are obtained 
without any apriori information. 

Any systematic effects in the time-series, such as drifts of 
the orientation parameters with time, cannot be taken into 
consideration the algorithm. For this reason the estimated 
accuracies must be understood not as absolute but as relative 
accuracies. 

3. Applications 
3.1 Position coordinates from NAVSTAR-GPS 
The NAVSTAR Global Positioning System GPS enables the determi­
nation of the x,y,z position coordinates of one or more GPS 
receivers. The application of GPS is of particular interest in 
photogrammetry for the inflight positioning of the aerial 
camera. This reduces drastically the ground control require­
ments for aerial triangulation (Frieß 1986). 

In the case of a stationary GPS receiver the accuracy estima­
tion of GPS measurements is relatively simple due to the redun­
dancy of the observations. In contrast to this, the application 
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of a GPS receiver in a moving vehicle, such as an aircraft, 
renders the accuracy estimation more fficult or rather impos­
sible if a non redundant satellite constellation (i.e. 4 satel-
lites or less) available or if an unsuitable receiver is 
used. Then the suggested algorithm with ARI-processes can be 
utilized for stochastic investigations. 

As an example some results of an accuracy s on real GPS 
data are presented in the following. The data for the analysis 
originate from a photogrammetric test flight with a Sercel GPS 
receiver TR5SB carried out by the Survey Departement of Rijks­
waterstaat in the Netherlands on June 10th and 12th 1987 (D. 
Boswinkel, R.Witmer, J.W.v.d. 1988). The posi coordi-
nates in the earth-f from the primary 
phase measurements are s analys . Systematic 
effects which luence of the coordinates 
are eliminated to a advance by simultaneous 
measurements with a second GPS rece at a stationary refe-
rence point. Both receivers recorded with astration rate 
of 1 measurement every 0.6 seconds. The data of the whole 
flight were divided according to the 6 photo-strips with about 
130 registrations each. Only the data within the strips are of 
interest and the aircraft then shows a very uniform kind of 
movement. 

Each position coordinate considered separatly by it's own 
ARI-process. The mean ARI process order was found to be (5,2); 
so 7 ARI process parameters ful the model. The 
parameters of the stochastic model were estimated without any a 
priori information. In table 1 the estimated standard devia­
tions of the noise-component in the GPS coordinates are listed. 
The main result is that the internal accuracy of the positions 
determined from a moving GPS receiver is about 0.02 m. 

Table 1: Estimated noise an [m] of GPS coordinates 

Strip Date X Y Z 

1 12.06.87 0 027 0.011 0.038 
3 10.06.87 0.020 0.009 0.026 
4 10.06.87 0.024 0.009 0.027 
5 10.06.87 0.020 0.013 0.024 
6 12.06.87 0.014 0.011 0.014 
7 12.06.87 0.012 0.007 0.010 

rms of strips 3,4,5 0.021 0.010 0.026 
rms of strips 1,6,7 0.018 0.010 0.021 

These results can be th an of the inter-
nal accuracy out of the least squares of the GPS po-
sitions. The LS ustment determines coefficient 
matrix Q and in general an estimate of the weight unit 
sigma naught, i.e. the GPS range measurement accuracy. In the 
case of a moving GPS obs 4 satellites the sigma 
naught value is not determinable because of the missing redun-



dancy. Out of different considerations the range measurement 
precision of the Sercel receiver in dynamic application can be 
assumed reasonably to be 00= 0.006 m. This value is twice as 
large as the precision obtained by a stationary receiver and 
depends mainly on the velocity of the aircraft. With this as­
sumption the accuracies of the coordinates given in table 2 are 
calculated (Frieß 1988). 

Table 2: Estimated internal accuracy On [m] of GPS 
coordinates from least squares adjustment with 
assumed range measurement accuracy of 00=0.006 m 

rms of strips 3,4,5 
rms of strips 1,6,7 

x 

0.022 
0.020 

y 

0.009 
0.009 

z 

0.017 
0.020 

Comparing the estimated internal accuracies from the ARI model 
in table 1 without any apriori stochastic information and from 
the least squares adjustment with apriori knowledge of the 
s naught (table 2), we note a very good agreement. It 
demonstrates that the ARI model is suited to be applied for 
modelling the dynamic characteristics of GPS coordinates during 
a photogrammetric flight and that the results are realistic. 

All subsequent evaluation of the sensor data, for example the 
aerotriangulation, is based on the filtered GPS coordinates. 
These filtered data with their stochastic informations are 
achieved from the ARI-model. Table 3 summarizes the estimated 
accuracies of the filtered coordinates and their autocorrela-

coefficients. It is an important result that in this exam­
pIe only the correlations from one to the next point (within 
0.6 sec) remain significant. 

Table 3: Accuracy teria of filtered GPS data 

Estimated accuracies ox of filtered coordinates [m] 

rms of s 3,4,5 
rms of strips 1,6,7 

x 

0.017 
0.013 

y 

0.007 
0.006 

z 

0.021 
0.016 

Correlation coefficients of filtered data d=0.6 sec 

r(ld) 
r(2d) 
r(3d) 

x 

0.46 
-0.06 

0.06 
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y 

0.69 
0.11 

-0.15 

z 

0.52 
-0.01 
-0.10 



3.2 At tude data from INS 
tude data, i.e. the roll-, of the 

sensor s to the terrestrial te system can 
be al system (INS) 
be of every t. The eva-
luation of INS measurements in most cases very fficult and 
depends essentiallyon the physical model which describes the 
systemat of a number of ical effects. 

of INS data presented in s chapter examine only 
tude angles. Any sys c ft effects 
errors in the gyros of the INS are not 

For this reason the filtered 
as absolute values, but must be rec-

c fts. Then the es 
are understood as the precis of one 

The data for the is come from two 
of INS. In the f t e tude of 

an INS from a NASA Shuttle are presented~ The 
the metric camera experi­ed data 

ment of the 
1983. The 
are 

ween the s , 
s are listed 

Table 4: INS 

ion on 2nd December 
ace every 2 seconds, the angles 

tudes refer to the earth-fixed 
The were subdi-

between 120 and 
are very s lar bet­

the root mean square va lues from all the 
table 4. 

tude data from Shuttle 

Es standard [deg] 

e On 

ARI-model errors Oe 

filtered data ox 

Correl coeff 

r(ld) 
r(2d) 
r(3d) 
r(4d) 

YAW 

0 .. 0060 
0 .. 0019 
0 .. 0027 

PITCH 

0 .. 0048 
0 .. 0012 
0.0027 

of ltered data 

0 .. 71 0 .. 62 
0 .. 46 0 .. 39 
0.18 0.10 
0 .. 13 0.13 

d=2 

ROLL 

0 .. 0060 
0.0014 
0 .. 0031 

sec 

0 .. 67 
0 .. 47 
0 .. 15 
0 .. 13 

The mean ARI process order s case is (6,1). The estimated 
accuracies are not very fferent between the three angles, so 
that a common measurement precision can be assumed .. The estima-
ted coeff show a decrease thin the 
f 



The attitude data of the second example are registered during 
an aircraft flight with a Litton LTN-72 Inertial Navigation 
System of a Falcon jet. The registration rate was 10 Hz. The 
characteristic of the aircraft flight is very different to the 
space shuttle flight, which is much more smooth. This is ex­
pressed by the ARI process parameters; here the ARI process 
order was only (2(2). The analysis refers to the central part 
of the flight, not disturbed by take-off and landing maneuvers. 
The results are presented here with reservation. Some discre­
pancies in the results caused by unsteadinesses in the aircraft 
trajectory are subject of further research. During undisturbed 
parts of the flight the standard deviation of the ARI-predic­
tion errors Oe decrease below 0.0001 deg. 

Table 5: INS attitude data from aircraft 

Estimated standard deviations in [deg] 

YAW PITCH ROLL 

observation noise an 0.0023 0.0035 0.0030 
ARI-model errors Oe 0.0005 0.0013 0.0026 
filtered data ox 0.0011 0.0013 0.0017 

Correlation coefficients of filtered data d=O.l sec 

r(ld) 
r(2d) 
r(3d) 
r(4d) 

0.86 
0.57 
0.29 
0.09 

0.79 
0.40 
0.09 

-0.07 

0.80 
0.41 
0.08 

-0.09 

The estimated observation noise an is in full accordance with 
other investigations from a stationary INS of same type. In the 
stationary mode the precision of the attitude measurement is 
about four times higher than in the dynamic mode, which was 
expected in advance. 

4. Conclusions 
This paper introduced autoregressive integrated stochastic pro­
ces ses for modelling the dynamic characteristics of the exte­
rior orientation parameters of a sensor platform. The ARI-Model 
in combination with a variance component estimation enables the 
entire functional and stochastical description of the orienta­
tion parameters. The main advantages of this model are the easy 
handling, the low number of necessary ARI process parameters 
and the dispensation of any apriori information concerning the 
stochastical model. 

The successful application of the ARI model to very different 
kinds of sensor orientation parameters improves the power of 
the concept. Comparisons to other methods for accuracy estima­
tion demonstrate that the obtained results are realistic. 
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