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Abstract

Even if the present stop of Shuttle missions constitutes a serious
obstacle to the developement of space photogrammetry, the contemporary
evolution of other positioning techniques (in particular GPS) offers a
choice to investigate problems connected with the adjustment of
spatial photogrammetric blocks.

In this paper we give ourselves the target of evaluating both the
precision and the accuracy considering different choices of control
points (i.e. using traditional tecniques or GPS) and operating on real
and simulated data.

Particular care has been given to the use of "pseudo-observation"
equations regarding the approximate values of unknown parameters.
Moreover we have analyzed the effects on the estimated heights caused
by the use of orthometric heights instead of ellipsoidal ones for the
control points.

A1l the adjustments have been made using the program GLOBO and
considering the bundles method.

Introduction

One of the most serious problems concerning the use of photographs
taken by a space shuttle is to have a reliable set of control points.
The ideal solution would be to establish a network of "ad hoc" points.
In particular the most suitable solution to this problem would be the
use of the GPS technique, considering the size of the areas involved.
Alternatively the coordinates of control points have to be deduced
from existing maps since the possibility of recognizing points of
networks already existing on the photographs s practically
unrealistic. '

In this paper we give ourselves the target of evaluating both the
precision and the accuracy from considering different choices of
control points and operating on real and simulated data.

As for the adjustment of "real" measurements we have to face the
problem of translating the a priori cartographic information on the
approximate coordinates into “pseudo-observation" equations. Moreover
we have taken into account the influence of the use of orthometric
heights instead of ellipsoidal ones.

A large set of simulations has been carried out to compare the
influence on the parameter estimates of different control point
schemes: networks with ground GPS stations only or with both ground
GPS stations and GPS on the shuttle.

A1l the adjustments have been done with the bundle method and using
the Institute's program GLOBO. This program has been developed to make
the simultaneous adjustment of <classical geodetic measurements,
photogrammetric measurements and "pseudo-observations” coming from the
use of spatial technigques (i.e. coordinates of points derived from a
previous adjustment of different kinds of spatial measurements). This
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program operates in geodetic coordinates and corrects the classical
geodetic equations for the influence of the anomalous gravity field.

1. Adjustment of a pair of photographs taken by Large Format Camera

We started by considering the bundle adjustment of a pair of
photographs taken by the Large Format Camera (LFC) during the Shuttle
mission - October '84. The photographs, taken from a height of about
235 Km, include an area of about 45000 square kilometers of north-west
Italy. The forward overlap 1is about 70% (see fig. 1.1). The
measurements and the relative and absolute orientations have been made
on the Zeiss Analytical Plotter C-100; the plate coordinates have been
corrected for film deformations exploiting the reseau installed in the
LFC. Therefore the standard deviation of measurements has been taken
as equal to 3 micrometers. The choice of the 687 measured points has
been made taking into consideration well visible points and points
which are easily identified on large scale maps. In our case recent
technical maps at the scale 1:5000 have been used. The points
recognized, mostly road crossing, have been digitized on the map and
the N-E coordinates have been trasformed into ¢, X, while the
orthometric heights have been directly read onto the map. So we have
considered a precision in the point determination of 3 m in planimetry
and of 4 m in altimetry.

fig. 1.1

We performed two adjustments: the first constraining the strictly
necessary number of coordinates to eliminate the rank deficiency; the
second considering all the observed points as control points.

Therefore, in the first test we fixed the three coordinates of two
points and the height of a third one only. In this way it has been
possible to make a first check of both the assumed standard deviation
and the quality of measurements. In the second <case a
"pseudo-observation" equation was written for every observed point
coordinate, with a weight proportional to the assumed standard
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deviation for its cartographic determination.

In that way we avoid giving a privileged role to same points and
forcing the measurements to fit an unreliable geometry.

Looking at the results, reported on the first two rows of table 1.1,
we can draw some conclusions:

1) the assumed measurement standard deviation of 3 micrometers seems
to be reasonable, since, in the first test, the estimate of o
goes back to 3.6 micrometers;

2) in the second test, the considerable increase of o_ (from 3.6 to
4.7 micrometers) shows that the hypothesis abou® the a priori
standard errors of the approximate coordinates is too optimistic.
For this reason, we have performed many other test to evaluate what
a priori standard deviation values would be consistent with
measurements and with the previously estimated O4-

0

First we introduced the '"pseudo-observation" equations for the
altimetry only, taking always fixed the points of the minimum
constraint test. Varying the weight, we verified that assessing the
value of the standard deviation to 4 m provides an estimated 80 of
3.7 micrometers, i.e. consistent with measurements.

Thus maintaining this value for altimetry, we constrained planimetry
with 8, 6, 5.5, 5 m respectively.

The results are shown in tab. 1.1.

As you can see, the decrease of the weight of pseudo-observation
equations produces a decrease of o_ so that the root mean square of
the standard deviations of the estimates decreases too.

This 1is a surprising result since to a less precise information

corresponds a more precise estimate.

CONSTRAINTS P = men O R.M.S (o) (cm)
(um) o o< Oa
¢ A n
no pseudo-observation
et one 682 3.6 358 379 | 1111
o5 = 05 = 3m; op = 4m 2736 4.7 201 | 215 | 528
op = 4m 1366 3.7 298 306 | 427
o5 = o5 = 8m; op = 4m 2736 3.2 189 183 | 369
o5 = 0% = 6m; op = 4m 2736 3.5 202 193 | 403
og = 05 = 5m; o = 4m 2736 3.8 212 200 430
OF 0% T 5.5m5 op =AM | 546 3.6 207 196 | 416
o5 = 05 = 5.5m; op = 4m 2736 3.6 206 195 | 413
ellipsoidal heights
R.M.S. (o) = —%~ ¥ Biz : r = redundancy

tab. 1.1
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However, the reason for the drop of 80 is easily explained if we
examine the formula adopted for 002:

Pv
-,
G -
0
m-=n
where
v = residuals of equations
P = weight matrix
m = number of equations
n = number of unknown parameters.

In fact the introduction of low weighted pseudo-observations allows
the residuals of these equations to became very large without
affecting too much the numerator of o 2 . Viceversa the denominator
increases since the redundancy grows considerably (from 680 to 2736)
so that the over all effects is a decrease of o 2 .

Now, the following problem arises: to find an unbiased estimate of
o 2 when we use "pseudo-observation" equations. t
Pgrticu1ar1y if we partition the observations as |yl y2| where
yl are the real observations and y2 are "pseudo-observations",
taking into account that we set systematically y2 = 0 , the formula
for the estimation of 602 ‘becames: : Ty ~

yi® {1 - afata + p1771 A% 1

0 ? = (1.1)
° m

where:

A = design matrix of observations

pl = "pseudo-observation" equations normal matrix :
(for the sake of semplicity we assume equally weighted
pseudo-observation equations)

m = number of real + pseudo-observation equations.

In the Tlimit p > 0, the estimate of o %2 including pseudo-
observation equations must tend to the estimate without these
equations.

For this reason (1.1) appears a biased estimate of 80 since:

m=n
802(p=0) T e 802 (without pseudo-observations)
m

Since the introduction in the general adjustment of
pseudo-observations with correct weights should not change the
estimate of o, » we have decided to assess the value of the weight in
such a way that this condition is satisfied, i.e. so that the o
estimated with pseudo-observations is equal to the one we estimatell
with minimal constraint only.

In this way the pseudo-observation equations have been used to improve
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the accuracy of the estimated parameters with an homogeneous
constraint over all the points, avoiding an "easy" gain on o _.

Later we investigate if the use of orthometric heights instedd of the
ellipsoidal ones affected the parameters estimates.

The program GLOBO, as already mentioned, works in geodetic
coordinates, ¢ ,x , and ellipsoidal heights h , so that constraining
the orthometric heights of a large number of points, we not only
define a different reference system, but we deform as well the
internal geometry of the block.

Therefore the 1.s. estimate of the parameters would be influenced by
the induced deformation.

The first step to verify this hypothesis has been to evaluate the
geoid undulation N at the observed points. To this aim we used the
estimates of N given by Barzaghi-Benciolini (1986). Starting from a
regular grid of undulations we estimated the values of N at the
points observed by means of splines interpolation.

Then we compared averages and standard deviations of the corrections
8¢, 81, &h starting from two sets of approximate values, the first
considering orthometric heights, the second considering the
ellipsoidal ones: in principle the two sets should give different
results as the approximate values enter also as pseudo-observations.
As you can see in table 1.1 there are no remarkable differences.

These results seems to be reasonable, since in this zone the standard
deviation of N is about 1.7 m whereas the measurement
photogrammetric precision, referred to ground coordinates, is about
2.4 m, i.e. insufficient to give relevance to this signal.
Particularly, it seems that the introduced distortions are absorbed by
small changes in the orientation parameters: their estimates in fact
varies of a quantity not significant with respect to the standard
deviation estimated, but sufficient to balance the effect of N.

2. Simulation study

The analysis of the precision and the accuracy have been done
considering the simulated block shown in fig. 2.1.

fig. 2.1
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It consists of two parallel strips NW-SE oriented (10 photographs);
the forward overlap is 70% whereas the side overlap is 25%. We assumed
to observe on the plates the points corresponding to a grid of 10'x10’
in ¢ and A ; their orthometric heights have been taken from a data
base derived from maps at the scale 1:25000. Furthermore we introduced
as observed points the vertices of the National first order network in
this area.

The ellipsoidal heights have been subsequently obtained by adding the
geoid undulation N as specified above. Altogether we have 688
observed points (about 220 points for every plate), 4378 observation
equations and 2124 unknowns.

We were interested in evaluating the size of the estimated parameter
errors (i.e. the differences between the simulated and the estimated
configuration of the block), so we simulated the observations too. The
plate coordinates have then been computed, starting from the
approximate values and using ellipsoidal heights for the altimetry.
Our analysis considered the dependence of estimated parameters on:

- the chosen scheme for the ground control;
- the reference surface for the altimetry (geoid or ellipsoidal);
- the size of measurements errors.

The results of the different tests have been summarized giving for
every set of estimated parameters x (point coordinates, altitude,
projection centre coordinates) both the mean square error of x:

-] 1 S -y )2
mse (x) —\j : 21,(x1 Xi) (2.1)
where:
n  =-number of estimated parameters
X = "true" known value
X. = estimated value

3
and the root mean square of its standard deviation predicted from 1.s.

theory:

! “
rms (55) -\j T (2.2)

In this sense m s e 1is a measure of what is called more strictly
“"precision", while r m s 1is a measure of the over all "accuracy".
When simulating the observations by means of a certain model which is
also the same used in the adjustment, the two guantities should be two
different estimates of the same object and thus closely comparable.

In this sense most of the time they are used in this paper as a pure
check of the program.

The two however differ from one another when the simulated data are
generated by adding to the model a non modelled bias, 1ike when we add
unmodelled orthometric heights.

Concerning the problem of the choice of the control points, first we
constrained planimetrically all the 103 points of the National first
order network 1in the area. Furthermore we assumed the ellipsoidal
heights of 28 points to be known. Then, in a more realistic test, we
considered a reduced number of control points (6 for the planimetry
and 10 for the altimetry). Looking at the results in table 2.1, same
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consideration can be drawn:

- the planimetric precision of the estimates is not affected by the
number of control points, at the contrary it exists an influence on
the heights that are in any way worse estimated;

to an increase in measurements errors corresponds a delay in the
precision of the estimates, as expected;

the ms e and the rms (o) are of the same order of magnitude,
so that we can maintain that the estimated values and the
theoretical values are not significantly different.

o ¢ (cm) A (cm) h (cm)
GROUND @ - "
CONTROL {um) MSE RMS(a) MSE RMS (o) MSE RMS (o)

103 planim.| 2 111 114 132 129 315 330

28 altim. 3 166 171 198 193 468 494

6 planim.| 2 118 131 133 146 347 362

10 altim. 3 177 196 199 218 519 542

tab. 2.1

Consequently with the conclusions of the first paragraph, we wanted
to then compare the parameter estimates errors when orthometric (H)
or ellipsoidal (h) control points heights are used.

Two kinds of tests have been performed considering ground control
point schemes previously analyzed. The results, obtained taking H
or h for both control points and tie points, are shown in table
2.2 (we omit the values of ¢ and X , since there are no changes).

GROUND CONTROL: GROUND CONTROL:
103 planim. - 28 altim. 6 planim. - 10 altim.
(Qm) o plate coordinates in micrometers

0 2 3 2 3
MSE 5 315 468 347 519
- RMS 5 330 494 362 542
MSE 284 399 519 440 576
¢ RMS 41 332 494 362 542

tab. 2.2

with ellipsoidal heights
with orthometric heights

@ m
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In the first test no errors have been introduced on the measurement,
to have an idea of the "pure" deformation pattern due to the geoid
undulation; as you can see, the m s e is significant. By
increasing measurement errors this effect is masked because to the
growth of the m s e corresponds a rise in the rms (o) , so that
globally it becames insignificant. Analogous results are obtained
for orientation parameters.

In a second step of our investigation about the ground control two
different GPS networks have been simulated. In the first we assume
to place a GPS receiver on the Shuttle and three other receivers on
ground, along the strips. After a proper adjustment of GPS
observations, relative positions (i.e. the differences Ad¢, AN, Ah
between a pair of GPS recejvers, in particular ground
station-projection center of a plate) can be taken as observed. We
introduced then in the block adjustment these values as
pseudo-observed quantities with various standard deviations,
neglecting by necessity correlations and fixing the coordinates of
only one ground GPS stations. The results of these tests, introducing
measurement errors of 2 and 3 micrometers on plate coordinates and
varying the precision of the pseudo-observations from 0.5 up to 5
meters, are shown in tab. 2.3.

We see that, as for previous simulations, none m s e is
significant; we note in particular that the decrease in accuracy for
point determ1nat1on according'to less accurate GPS observations, is
very Tittle. o . : o !
In a second GPS ground control network, all the receivers are settled on
ground: we kept the stations in the previous configurations for the
planimetry (i.e. we assumed to have a GPS received at the same ¢ and
A of a projection centers, for each photograph). In this way we
achieved the goal of having the same number of pseudo-observations as
in the previous simulation and about the same configuration, but for
the heights of the projection centers.

The same kind of pseudo-observation equat1ons has been introduced in the
adjustment but, because of the more advantageous GPS scheme, the
standard dev1at1ons are to be supposed Tower.

In fact if one receiver is on a Shuttle while the other is on ground
we cannot assume by differencing that the effect of the 1onosphere and
the troposphere be cut down.

You can find the results of this second set of simulations in tab.
2.3.

It seems that there is no real dependence of the accuracy of the
estimates on the standard deviations of GPS observations (from 0.05 to
0.5 m at least). Assuming for GPS observations the same accuracy, it
seems there is no remarkable differences in the r m s (o) when GPS is
settled on ground only and on ground and on the Shuttle.
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GROUND o ¢ (cm) A (cm) h (cm)
CONTROL * - - -
WITH GPS | (um) | MSE | RMS(5)| MSE | RMS(5)| MSE | RMS(3)
ON THE 2 116 131 149 140 335 330
SHUTTLE ,
6 =0.5m 3 174 191 216 | 206 499 492
ON THE 2 119 134 182 143 343 332
SHUTTLE
o=1nm 3 174 200 241 214 504 497
ON THE 2 135 161 228 208 345 342
SHUTTLE
o =2m 3 185 220 292 229 510 504
ON THE 2 192 238 375 225 363 367
SHUTTLE
6 =5m 3 240 288 436 282 528 528
ON GROUND| 2 117 138 143 146 364 | 375
ONLY ; ; N — ,
c=1m | 3 | 170 206 202 218 552 | 560
ON GROUND| 2 115 127 | 135 139 | 377 | 366
ONLY ‘ _ |
o =0.5m 3 170 190 199 | 207 570 547
ON GROUND| 2 115 123 134 | 136 386 363
ONLY ,
6 =0.2m 3 170 184 201 203 580 543
ON GROUND| 2 115 | 122 | 135 135 | 389 362
ONLY - ,

lo=o0.1ml 3 | 172 | 182 202 | 203 | 583 | 542
ON GROUND| 2 115 | 122 136 | 135 390 | 362
ONLY ‘ ,
s = 0.05m| 3 172 182 202 203 585 542

tab. 2.3

The conclusion could be that, when aiming at determining the
coordinates of ground points it is not so important to have an
accurate simultaneous determination of the orbit of the carrier; by a
comparable amount of GPS measurements on ground will do in any way.
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