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Aerotriangulation research was conducted to determine the minimum control 
configuration that would yield accurate photo control. 
In this context, a new mathematical model which accepts photogrammetric 
and geodetic observations has been developed and investigated for control 
extension at large scale (1:1500). All parameters of transformation and ca 
lihration are recovered simultaneously in a least squares block adjustment 
Practical experiments have been made with a UHK flight-variant camera moun 
ted on an external photomount of a Cessna 172 aircraft. The ground control 
points were targeted and their coordinates could be determined from terres 
trial observations. The photogrammetric observations were performed with a 
Wild Aviolyt BC2 analytical stereoplotter and processed subsequently by 
its softwares. 
The analysis of errors and the comparison with the block triangulation by 
independ.ent models and by bundle adjustment reveals that the proposed me
thod has the same estimated accuracy and offers a theoretical and practi
cal alternative to existing models for control extension. 

INTRODUCTION 

The photogrammetric theory employed in our study for the least squares ad
justment and error propagation of analytical photogrammetric triangulation 
is based on direct linear transformation. The Projective Transformation Pa 
rameters (DLT) are computed by an iterative way using relative control 
points by considering as unknowns not only the DLT coefficients of each 
exposure station, but also the X, Y, Z coordinates corresponding to some 
of the measured images (Barbalata, 1980). 
Geodetic measurements, in our case ground distances, provide excellent con 
straints to the general adjustruent. Distances and elevations differences 
are measured by precise surveying methods and if the number of those com
plementary measurements is kept to a minimum, no distortions are introdu
ced into the estimated parameters. 

THE HATHENATICAL HODEL OF ANALYTICAL STEREOTRIANGULATION 

The fundamental relations between the cartesian space 
Z of a point j and the coordinates x y of its 
can be put into the form 

coordinates X , Y , 
photographic image, 

A6,X + B~Y + c.6z A'6X + R'6y + c'6z 
" x = - c -----------------~--

D6 X + E L\ Y + F 6 Z 
y - c (1) 

where x ,.y are the measured plate coordinates properly corrected for 
comparator errors and lens distortion , respectively : 
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x = x + x(~ f2+ KZrit+ ~ r~ ... ) + (f2+ 2x2 )P, + 2 X Y P2 (2) 
-'" Y + y(~ f2+ Kz.r"t+ K~r 6+ ... ) + 2 X Y P'l + (r2+ 2Y'2. )P2. Y 

X , Y are image coordinates reduced at principal point xr , Yp 

x = x - Ap Y = Y - Yr r = I (x - Ap ):2 .. (y - Yp )2- (3) , , 

c is the calibrated principal distance of the i-th exposure, 
x ,yare the measured image coordinates corrected for comparator errors 
Ki , Kl , K3 are the coefficients for Gaussian symmetric radial distortion. 
P1' Pz are the coefficients for descentering distortion. 

AX = 
c 

Y - Y , (4) 

where Xc, Y C, Z (' are object space coordinates of the perspective center of 
the i-th exposure. 

l
-A B C

1 
T = A' B' .C.' = the rotation matrix of the i-th exposure 

D E F 

After some manipulations, equation (1) can be written as : 

a1 X +al Y +a,~ Z +a4 aSX +a6Y +avZ +as 
x +6x - -~~--~----~~--~~- = 0, Y +AY - -~~~~-~-~-~--~~--

a,X +a10Y +a1,Z +1 a 9 X +a·19Y +a11Z +1 
where : 
AX (-2 -~ -, ... ) + (f + 2i l )P1 + 2 P,2. x K1r + Ke r + K3 r ~ x y 
Ay = (K-2. K- It+K- 6 ... ) + 2 x y Pi + (r + 2y2)pz. y 'I r + l.r 3r + 

(5) 

"= 0 (6) 

(7) 

and a1, a2' •••• a 11 are eleven parameters of Direct Linear Transformation, 
respectively 

[a, 
:a; 
a, 

where 

az a3 ~ 1 [-xr D + cA -xp E + cB -xp F f-

a~ a~1 = cA' -Yp E + cB' -Yr F + 
aiO a i 'l 

-;- -Yp D_~ 
-E -F 

R = (x p D - cA)XC + (xr E - cB)Yc + (xf F cC)ZC 
s = (yp D - cAt)~ + (Yp E - cB')Yc + (Yf F -cC')ZC 
V = DXe + Eye + FZ c 

cC 
cC' 

The two condition equations (6) can be expressed by the functions 

in which 

Fx x + A x - (rol q) = 0 
Fy = Y + A Y - (nl q) 0 

[ ~l = 

!j (8) 

(9) 

(10) 

(11) 

The equations (6) are the basic equations for DLT, where the eleven parame 
ters are considered as being independent. In order to obtain an exact so
lution for the calibration, it is necessary to establish two constraints 
between them, which must be enforced for each station (Bopp, Krauss, 1978) 
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2- 2 )1 1 0 (12) F = Q1 - Q2 f- (QS - Q4 Q"3 = 0, F. = Q& - Q4 Qs Qj = 
1 f 

in which : 
Q1= 2 + 2- + 2- Q; = + a2. a w + a'l a1 a 2 a,3 , a'1 a 9 a 3 
Q2 = a~ + a~ + a~ , Q,=:= a" a9 + at:, a 10 + a7 a 11 (13) 

j :;, 

Q3= ai + aft> + 2- Q.= a., a, + a.2 a6 + a,; a1 a 11 , 
b 

The photogrammetric model under consideration is assumed to involve m 
exposure stations (i=I,2, ••• ,m) and a total of n control points (j = 1,.n) 
It is assumed that aproximations are known for each of the unknown 
coordinates of the control points. 
According to (10), the linearized condition equations arising from the 
j-th control point and all m stations can be formulated. The appropriate 
matrix equation for this ensemble is : 

"J + B !J. + 136 = E (14) 
where 

B~ B;' 0 0 
'1 

B1 

r 
VI .... 
v,2 B' 0 Bi • • • 0 B2 E,2 2-

y.= B= Bj= E:= . (15) 
J J J . 

B':' 0 0 B" B .. E . ·v h?) ~J hi) h1~ 

For calibration the two constraint equations (12) are interpreted as addi
tional observations with a suitable high weight which enforces the zero 
variances. The linearized constraint equations arising from all m stations 
are expressed by the system : 

{j + 
c.? 

BA = G (16) 

If all linearized equations arising from all n points and all m stations 
are gathered, the set of equations can be written in matrix form as : 

(17) 

in which the primary matrices B' ,B",B ,B are defined by the Jacobians: 

E'= J ~& , 
v(u') k'=1,2 ••• 5 

(J(F;,:., Fy)Q 
B ----------.--.---------_:.. 

t> (u)t'k=1 ,2,3 

x" + 6 xcv - (ml q) DC 

6. distortion = (~K1 

(Sa" aa2 .... • .. ~a1" 
1"' 

6= ) , 

u .. = (a 1 , a2 ' • • • .. , a", ) 

The quantities x"+ II xl/I) 

d(F~, Fy t 
E" = -------------------

d(u")"'k"=1,2 ••• 11 

O(F)(, Fy)O 

B = -------------------

!\K o 3 

[}.= (8X 

u: = 
u~ = 
u' 

5 

E = 

u! = P, 
u$ P, 

f 
- F~ ICI 

- r.o _ 1.1. 

(18) 

yU+ ~ y"6' represent values of measured image 
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coordinates referred to the approximate principal point and corrected ap
proximately for radial and decentering distortions. 

THE HATHEHATICAL HODEL OF GEODETIC OBSERVATIONS 

The observations considered in this approach are up" slope distances ltd" 
measured by precise surveying methods between the points which appear on 
the photographs. The equations had to be transferred into a Cartesian 
coordinate system and are given in linearized form (Barbalata, 1981) 

(19) 
where : 

D = [~~~_~ 'J(Fd ) ()(Fd ) O(Fd ) d(Fd) ~~~~J I{) 

~ Xi? 0 Y~ ~ z~ QXL 7Jy I.. OZL 

AJ {$" XI-? ~yP' ~ZR ~X£. '\YL ~ZI..]; L = -(FJ / (20) 

(FJ )' = d' - Y(XIl -X,)2 + (yR -yL )2 + (ZR-zj2 = d' -d" 

iJC • • • • 0 () () and d 1S computed uS1ng approx1mate coord1nates X , Y , Z • p 

If ~ = d /dl'n represents the scale factor for a distance "I" and <?trl= f~~ /p 
the average of scale factor, then the approximate coordinates X, y, Z 
in (20) may be evaluated mUltiplying approximate model coordinates x , y , 
z by the scale factor ~~, where : 

d;1 =j(X'1- xl )2+ (YR- YL )2+ (Zq- z£)2 (21) 

The complete mathemetical model is obtained by combining equations (17) 
and (19). Using matrix notation, the model may be written as follows: 

[!J + [! B 
o 
o 

(22) 

The normal equations for a least squares solution are then given by the 
following expression 

(23) 

After some manipulations, the ~ matrix is first solved from a set of re
duced normal equations and then matrices inside the matrix are sol
ved for one at a time. The solutions of the normal equations are thus pro
vided by : 

~ = [(N+:N) - N(N+Nd) tr~J-l[(c+C) - N(N+Nd) (C+Cd)] (24) 
D. = "[N+Ndf' (C+Cd) - (N-rNdr' Nr

6 

Once the vector ~ thus computed in (24), each vector of the X , Y , Z 
parameters corresponding to the distance tid" can in turn be computed from: 

1 = 1,2, •••• ,p (25) 

An iterative procedure is used; the iterations are stopped when the cor
rections in the b and A matrices become negligibly small. After the solu-
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tion has been checked to be convergent one, the vector of residuals may be 
obtainen from 

v = E 
<0 

V = G ; -v = L ; (26) 

in which E G L cienote the final discrepancy vectors of the iterative 
process. 
The estimation of the reference variance would be : 

(27) 
(2mn+2m+p) - (51-11m+6p) 

A computer program (PROJECT) was developed by the author and its formula
tion is based on the principle of the observation equations as nescribed 
in the above paragraph. 

TEST AND PRACTICAL APPLICATION 

The PROJECT program has been tested with fictious data and under operatio
nal conditions. The primary purpose of this series of tests was to evalu
ate the computational accuracy of the mathematical models. Hence, unper
turbed image coordinates were used as input data in all tests and the co
ordinates were assigned a standard deviation of + 5 micrometers. 
All of the coordinate control points were weighed with a standard devia
tion of + 10 cm in X, Y coordinates and + 5 cm in Z. 
Unperturbed data were also used for distance measurements but they were 
assumed to have first-order accuracy. Because the exact object coordinates 
of all "n" object points were known, the accuracy of the PROJECT solution 
can be evaluated directly by comparing the computed point coordinates with 
the corresponding known values. 
Various configurations of controls were used for the photography which was 
generated at various scales. The results show that the PROJECT solution 
has computational accuracy and sensitivity relative to the accuracy of 
measured data. 
The PROJECT program was applied und.er operational conditions. The images 
considered for these tests were acquired using a UHK Zeiss flight-variant 
camera, f=99.47 mm, mounted on an external photomount of a Cessna 172 air
craft. Three strips B & W at 1/1400 scale and two strips in colour at 
1/1800 scale were acquired with a forward overlap of 80 %. The Ground con
trol points were targeted before the flight and their coordinates were de
termined from terrestrial observations by spatial trilateration. Image co
ordinates were measured in the Wild Aviolyt BC2 analytical plotter at the 
photogrammetric laboratory of the Universite de ~1oncton. Three sets of 
measurements were taken in monocomparator mode on each frame and subse~ 

quently processed to account for the effects of film deformation and lens 
distortion. Calibration data were obtained from Zeiss-Jena Calibration 
report. 
Hodels were formen analitically using Wiln's program softwares THO and ATI 
Different models were formen using 80 %, 60 % and 40 % forward overlap, 
giving a base/heigh ratio B/H of 0.33, 0.66 and 1, respectively. RMS re
sidual paralaxes for relative orientation varies between 2.2 ann 4.7 micro 
meters. 
Aerotriangulation methods used in the tests were 

Independent model aerotriangulation, program PAT-H-43 (Ackermann et 
ale, 1973). Hodel coordinates from ATI program were Ilsed as input nata. 
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Bundle adjustment, program BIC (Barbalata, 1981). A set of observed 
photocoordinates, corrected for film deformation and lens distortion, was 
used as input. 

- Projective transformation, program PROJECT (Barbalata, 1981). A set 
of observed photocoordinates without any correction, was used as input. 

DISCUSSION OF RESULTS 

Adjustment of the entire block (B & W) of 36 models was carried out using 
different control configurations (Table 1). 

Table 1. Root Bean Square Error at check points (mm) 

Control Number Number Bundle Adjust. Indep.Hodel Project.Transf. 
version control check 

i points points X,Y Z X,Y Z X,Y Z 

-------------------------------------------------------------------------
2 24 68 8.4 15.1 9.7 16.3 10.2 17.1 
3 16 70 9.2 18.3 10.5 20.0 11.3 20.7 
4 12 82 10.9 22.7 12.4 23.0 13.0 23.9 
6 8 95 12.3 25.8 14.6 29 .. 6 15.2 31.4 

12 4 95 14.7 30 .. 3 17.9 38.2 18.7 39.2 

i = bridging distance (base length). 

Comparison between the results of different control versions shows that 
the Projective Transformation Method combined with distance observations 
produces comparable accuracies with Independent Models Method. It is evi
dent that larger degradation in vertical accuracies depends on the distri
bution of control points. 

CONCLUS IONS 

Because of the concept of simultaneous block adjustment, all photos are 
directly interrelated, which subsequently increase the band width of the 
reduced normal equation matrix, especially in Projective Transformation 
approach. The computing time for solving this system, therefore, could 
increase beyond acceptable limits in the case of large blocks. 
Therefore, it is recommended to prepare a set of image coordinates correc
ted for lens distortion, atmospheric refraction and earth curvature and 
then to adjust the corresponding block. 
But the obvious advantage of this method is the possibility to use non-me
tric cameras, reconnaissance cameras, for control extension. No internal 
camera or external exposure station parameters are needed as input data. 
The use of straight-line distances as control data enhances the applicabi .... 
lity of the method. 
Horeover, these tests have shown the outstanding qualities of the Zeiss ~ 
UHK system used to take the photos. 
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