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Summary 

The optimum sampling density for data acquisition of digital terrain 
models is mostly derived by analyses of dense terrain profiles. Differ
ent procedures have been proposed in the recent past based on determin 
istic and stochastic formulations, respectively. 

The paper demonstrates three methods to solve this task: Ii trial-and
error formulation, a Fourier-series-like approach and Ii variogram evalu
ation. As far as random observations are concerned, different approaches 
can be applied to solve the profile smoothing. For that reason, also 
a smoothing procedure by Wiener filtering is integrated into the data 
analysis. The influence of noisy observations on the determination of 
the optimum sampling interval is proven by some examples. 

A critical comparison between the methods demonstrated provides for 
further experience in this field. 

1. Introduction 

The determination of the optimum sampling interval ror data acquisi
tion of grid digital terrain models becomes more and more important es
pecially with regard to the set up of country-wide DTM's. Its purpose is 
to acquire DTM data with the least number of sample points and yet pro
duce DTM products with sufficient accuracy. In practice the DTM data are 
either under- or over-sampled leading to an inaccurate DTM, which re
quires resampling, or needs unnecessary observation time, extra data 
processing and storage problems to be avoided by an optimum sampling 
strategy. 

Hence it is undispensable to prove the sampling strategy on the opti
mum sampling interval, what can be done by analyses of profiles recorded 
from the stereo model or portions of it. For the data analysis different 
strategies may be applied, but all need an a priori accuracy number as 
indicating the error budget one is willing to pay for. This number can 
be estimated using the knowledge of similar projects, in which the error 
behaviour of the whole DTM process has been computed (model setup, deri
vation of contour lines, etc.). Therefore, some experience must be pre
supposed to come to reliable estimates on as' A detailled description on 
error transfer functions has been given by K. Tempfli (1982) using the 
method of spectral analysis - a stochastic approach. 

The strategies for the analyses of profiles can be either determin
istic or stochastic. Different procedures are known, which have to be 
compared with each other to have some knowledge on the advantages and 
disadvantages. A first comparison has been made by A.E. Balce (1986, 
1987) using a trial-and-error approach, the program SPECTRA (D. Fritsch, 
1984) and the program LOGKV (P. Frederiksen et aI., 1983, 1984, 1986). 

The aim of this paper is to study the influence of noisy observations 
on the profile analyses. For that reason, the same programs have been 



implemented with slightly changes (E. Dirscherl, 1987), but were supple
mented by a smoothing procedure to eliminate the observation noise. This 
implicates a two-step procedure 

(i) smooth the profiles 
(ii) analyse the smoothed profiles. 

A quite similar approach il proposed by J. Lindenberger (1986, 1987) 9 in 
which ARIMA processel are used to model terrain profilel. 

2. Data Smoothing 

Let x(s) be a continous profile of the stereo model or portions of it 
to observe continously in any distance interval sE(so,sm-l'. The profile 
mea I u rem e n t sam p 1 e s x (s) i n tot h e sam pIe set (x ( s:: So ), x (s:: s 1 ), •••• 
x(s::sm-l) with M samples in all. 

This data set represents a · digital signal I, which is causal and of 
finite length because of the definition of the distance interval; it can 
be described by 

x (m) (1) 

equidistant data sampling being assumed with J p as sampling interval. 
With the digital unit sample (impulse) 

m::O 
d (m) - { 

o 
and 

1 
d(m-k) -{ 

o 

the signal x(m) is given as discrete convolution 

M-l 
x(m):: I x(k)d(m-k) :: x(mHtd(m) 

k::O 

m::k 
(2 ) 

(3 ) 

with x(k) as the magnitude of the signal x(m); this convolution is usu
ally symbolized by an asterisk * . 

2.1 Wiener Filtering 

The concept of Wiener filtering can be transferred into digital fil
tering using some definitions of the signal processing discipline. 

Let be given the filtered signal (profile) y(m) represented by the 
convolution of x(m) and a kernel h(m) 

M-1 
y(m):: I h(k)x(m-k) :::: h(mH~x(m) 

k::O 
(4 ) 

whereby the kernel h(m) describes the filter behaviour; it is also 
called' impulse response I because it is the output (reaction) of the 
filter when the unit impulse d(m) is its input (D. Fritsch, 1982b). 

In order to compute the kernel h(m) the following signal model is 



introduced 

I x (m) • vIm) + n(lI) I (5) 

that is, the profile measurements )«(m) are disturbed by any errors or 
noise n(m}, whereby y(m) is the true or errorless signal we are inter
ested in. Hence, the filter kernel has to be derived such, that the ad
ditive noise of (5) will be removed leading to an estimate Y(m). Using 
the Wiener filtering notation its objective function minimizes the 
variance a2 of the estimation error e(m).y(m)-y(m) defined as 

in which E is the expectation. For stationary x(m) and the mean values 
E(y(m)=O, E( n(m)=O as well as E(e(m»=O the solution of (6) results 
into the discrete form of the well-known Wiener-Hopf integral equation 

M-l 
R (A) III I h(A)R (A-k) l1li: h(A)*R (A) (7 ) 

yx k=O xx xx 

with Ryx(A) as crollcorrelation function between y(m) and x(m} depend
ing on the correlation lagA\"A=0,1,2, .... ,M-l; Rxx(A) is the autocor
relation of X(I) and h(A) the kernel of the Wiener filter. Thil convo
lution could be solved al linear equation IYltem, but for larger data 
sets the inversion of the autocorrelation latrix Rxx(A) costs a lot of 
computing time if it has not a special structure as Toeplitz matrices 
have. 

r.:' Taking the Fourier transform ~ on both sides of (7) the convolution 
sum is transferred into the multiplication 

jw jw jw 
S (e ) III: H(e )S (e ) 

yx. xx . 
whereby Syx(e Jw ) and Sxx(e Jw ) are the power spectra and H(e jw

> il 
transfer function (frequency response) of the Wiener filter. Under 
assumption that y(l) and n(a) are not correlated with each other, 
following siaplifications are valid 

R 0.> • R OJ 
yx xx 

R ( A) l1li: R OJ + R OJ (9b) 
xx yy nn 

which lead to 
jw 

jw Syy(e ) 

H(e ) = 
S (e jw) + S (e jw

> 

( 10) 

yy nn 

the 
the 
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Let UI furthermore 
sponding correlation 

suppose a 
function and 

white nois! process n(m) with corre
power spectrum, respectively 

jw 
S (e ) l1l:I 0- 2 (11) 

nn n nn n 



as well as a 1st order Markov process for the signal y(m) (D. Fritsch, 
1982a) with 

R O:S;cx<1 ( 12a) 

jw 
S (e )::- (12b) 

yy 

Thus, it follows for the frequency response of the Wiener filter 

jw 
H (e ):: ( 13) 

t 0 be i n t e r pre ted a Ii 0 P tim allow p a Ii s f i 1 t e r i fay> an w hat i s pre d 0 m -
inantly the case in profile analyses. The filter has to be fitted onto 
the data to be filtered, so that for given variances a? and a~ one needs 
the interpedendence of y(m) to be estimated if and only if y(m) has the 
ergodic property in addition to be stationary. 

In order to compute the kernel h(A) of the Wiener filter (13) the fol
lowing relation is valid <L.R. Rabiner/B. Sold, 1975) 

jw 
H(e ) 

j«(K-U/2)w (K-1) /2 
1: 

k::O 

- j ~ j w 
a(k)cos(kw) ::: e IH(e >1 

if the length K is odd, otherwise it holds 
<14a) 

jw -j«K-l}/2)w K/2 - j~ j w 
H(e ):: e 1: b(ldcos«(K-l)/2)w) =: e IH(e )1 

k=l 
(14b) 

In both terms the kernel h(k) is obtained by simple substitutions 

a(O) :: h((K-1}/2}~ a(k) :: 2h(K-U/2tld (15a) 

( 15b) 

The final estimation of h(k} uses these relations in a least squares 
approximation with the objective function 

2 IT jw * jw 2 
a :: J <iH(e )1 - IH (e >I)dw = min 
t 0 

jw * jw 

( 16) 

in which IH(e ) I is the ideal and IH (e ) I is the approximated magni
tude of the frequency response. 

Using the samples IH(I> I Vl=O,1,2, •••• ,L-l of (13) the evaluation of 
(16) results into the least squares approach: let be v(l):=IH(l)I-lH~\l)1 
the residual at the sampling pointw 1:=lw/(L-l) then the following linear 
model will be introduced 

( 17) 



whereby y contains the samples IH(l>i with L samples in all, v is its 
corresponding residual vector, A is the matrix of known coefficients con
sidering (14) and x contains the substituted filter kernel a(k) or b(k). 
The minimization of v1v corresponds with (16) and leads to the normal 
equations 

( 18) 

to be solved for the estimates 

-1 
x :: (A'A) A'y (19a) 

A 

V :: Ax - y ( 19b) 

As goodness of fit for the evaluation of (16) the maximum residual can 
be used 

Vi=1,2, •••• ,L-l (20) 

The implementation of the filter is given by (4) but one has to consid
er different lenghts of the kernel and the signal to be filtered: the 
longer the kernel the more computation time is needed for the filtering 
process. Therefore, the following relation holds: K« M. Because of the 
symmetry of the kernel (4) can be rewritten to provide for zero phase 

A (K-1)/2 
y(m) == I h(k)x(m-Id 

k==-(K-1)/2 
( 21> 

if K is odd; otherwise for K even the zero phased signal y(m) is not de
fined at the sample x(m) but in the midst of x(m) and x(m+l). 

3. Data Analysis 

The following methods for the analysis of profiles are investigated 

(i) a trial-and-error approach by linear interpolation 
(i1) a Fourier-series-like procedure 
(iii) a variogram evaluation 

While (i) and (ii) can be seen as purely deterministic, the variogram 
approximation is based upon the concept of self-similarity - quite simi
lar to the concepts of random processes using autocorrelation functions. 

3.1 Linear Interpolation 

The procedure consisting of linear interpolation between profile sam
ples is quit~ simple but very robust as can be shown later on. The opti
mum sampling interval is found recursively by the use of coarser pro
files with a simultaneous quality control. 

Starting with the first sample the respective neighbour can be found 
by linear interpolation 

III 



x(m+k) - x(m) 
x(m+n) = x(m) + n \In=1,2, •••. ,k-l (22) 

k 

with x(m+n) as interpolated (estimated) sample, x(m) is the 1st refer
ence point and x(m+k) the 2nd reference point situated at kJ p apart from 
x(m} within the profile. 

The quality control of this approach is given by estimating the errors 
c;(m) 

A A 

c:(m+n) I: x(m+n) - x(l+n) (23) 

which lead to the quality measure (RMS-value) 

2 n ~ u 2 
a = =: RMS(k) (24) 
int r 

2 2 
This value has to be compared withas: if the RMS(k) is less than at the 
process is repeated by increasing the control spacing by J p• Assuming 
that kJ p is the control spacing for

2
each recursion, k=2,3, •••• ,K, where 

K is the least value of k whereby alis exeeded,then the optimum sampling 
interval has been found 

J 
opt 

a: - RMS(K-1) 
+ } J p 

RMS(K) - RMS(K-l) 

3.2 Fourier Series Approach 

(25) 

The Fourier series approach has been given in D. Fritsch (1984, 1985) 
but should shortly be reviewed in the followingl 

Let x(m)Vm be the profile to be analyzed, its discrete Fourier trans
form (DFT) gives the complex set of functionall 

... j 2rrkm/H 
x(m)e (26) 

to be transformed back by the inverse discrete Fourier transform (IDFT) 

M-1 j2rrkm/H 
I X(k)e 

M kl:O 

Using the Eulerian notation 

j ~ (k) 

X(k) I: An)e 

(27) 

(28) 

" it h A ( k , I = Vx l. ( k , + X I ~ ( k ., as u 9 nit u d e and ~ ( k , : = tan - ~ X III ( k , I X R e ( k " as 
its corresponding phase, (28) may be rewritten to 

M-1 
X(I) == I A(k)(cos(mw(k)+~(k»+jsin(mw(k)+~(k») (29) 

M k==O 

111-498 



For M even the profile can be reconstructed (D. Fritsch, 1985) 

A(O) A (M/2) cos (mrd 2 (M/2-1) 
x (m) :: - + + - I A(k)cos(mw(k)+~(k)) 

M M M kllill 
(30) 

whereby for M odd the relation i I valid 

A(O) 2 01-1)/2 
)«(m) :Ill - + - I A(k)cos(mw(k)+~(k)) (31) 

k=l 

Alsuming a coarser profil xk(m)Vm with sampling distance kJ p itl highest 
frequency is determined by the sampling theorem 

(32) 

With this relation and the reconstruction formula (30) or (31) the compu-
tition of the sampling factor 1 can be 
frequencies of the dense profile and 
from the highest to the lower ones. 
RMS-val ue cr." so that wi th cr: ::: cri 
leading to 

[ Aop t = 1 A P J 

done iteratively: start with all 
reduce the frequency number going 
Every reduction contributes to a 
the final frequency w(l) is found 

(33) 

If different sections j within the profile 
final 1 may be defined as mean value 

deliver factors lij9 the 

1 = 
MN 

M N 
I I 

i=1 j=1 

3.3 Variogram Evaluation 

(34) 
i j 

The variogram approach for profile analysel has been introduced by 
P. Frederiksen et ale (1983, 1984, 1986). It consists of a statistical 
analysis of the profile and is based upon the concept of self-similarity. 

Let x(m)Vm be the profile, its variogram is the mean value of quadrat
ic differences of two points with lag k 

M-1-k 
V(k) :: I (x(m) - x(m+k» Vk=1,2, •••• ,M/2 (35) 

M-l-k m=O 

If V(k) versus k is plotted on a log-log-scale it can be modeled as 

V(k) = ck~ (36) 

Investigations with real data have shown that the points tend to lose 
correlations at larger values of k. In many cases it is sufficient to 
use a straight line for the approximation of the log-log plot of the 
variogram, from which the constant loge and the slope ~ can be determined. 
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Starting with the first e.g. three points representing log V(k)Vk=O, 
1,2 a first straight line may be computed by least squares. The re
malnlng residuals have to be compared with a threshold which corresponds 
with an acceptable graphical error. If residuals are less than this thre
shold. the process is repeated with the next point included, until at 
least one residual exceeds the threshold. 

The optimum sampling interval is then given by 

with L resulting from 

2 2-2~-1 
Or:. ~ 
.-II :: (L ) ( ) 
c 

4. Applications 

+ 2 

(37 ) 

(38) 

The two-step procedure consisting of Wiener filtering and profile anal
yses is applied on nine examples of real profiles. Because of the defini
tion of the Wiener filter and also of the Fourier-series-like approach 
as well as the variogram evaluation the mean value of the profile to be 
analyzed should be 

(39) 

what means, that the real data have to be centered. Centering can be 
done using the strategies 

(1) remove the mean value 
(ii) remove a straight line 

leading to the preprocessed profile 

(40a) 
or 

(40b) 

with aD and a1 as parameters resulting from a least squares approxima
tion. There are also other trend models such as a combination of (40b) 
with a Fourier series, but this should not be commented on in this pape~ 

4.1 Special Considerations 

In order to show up the influence of noise on the determination of the 
optimum sampling interval the first profile was superimposed with 
Gaussian noise with E(n(m)=O and 0=0.5. The following analyses were 
made 

(i) compute the optimum sampling interval of the original profile 
(ii) compute the optimum sampling interval of the noisy profile 
(iii) smooth the profile and compute the optimum sampling interval 

of the Imoothed profile. 
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All three profiles are represented by Fig. 1; the results of the pro
file analyses can be seen in Table 1. 

x (m) ,.. 

filter parameters: 
,. 
<X :: 0.9432 
If, 

Cly = 2.36 
a == 0.43 n 

Jto. loot I'" U.. '''' I." 1!oH II 

Fig. 1: Terrain profile No.1 - (a) original, (b) noisy and (c) smoothed 

Table 1: Profile analyses of terrain profile No.1 (J p==5(m),Cls ==1(m» 

Typ Trend Lin. Int. Fourier J Variogram 
t----------________ 4.,op t opt ____ --...« 

original mean value 

noisy 

smoothed 

straight line 

m.v. 
s. I . 

m.v. 
s. I . 

4.2 Further Analyses 

80 (lid 

80 

61 
61 

79 
79 

75 64 
107 65 

75 
98 

85 
107 

29 
29 

50 
51 

The remaining profiles were analyzed without and with Wiener filtering 
(see Fig. 2). Because of the sensitivity of the Fourier approach against 
trend models the results of Table 2 and 3 have been obtained using a 
straight line to center the profiles. As can be seen in Table 3 the data 
smoothing provides in all but one case for larger optimum sampling inter
vals. 

Table 2: Profile analyses of original profiles «11=1(m), Dim. (Jopt=<m» 

No. Lin. Int. 
Jopt 

Fourier Variogram Mean 
Jp Jopt J opt 

2 2.5 40 23 36 33.0 
3 2.5 72 67 53 64.0 
4 S.O 115 128 75 106.0 
5 5.0 89 98 72 86.3 
6 2.5 72 71 76 73.0 
7 2.5 89 142 66 99.0 
8 5.0 14 5 12 10.3 
9 5.0 75 98 67 80.0 
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Table 3: Profile analyses of smoothed profiles (ef
s

::1 (m), Dim. (Jopt::::(m») 

No. Lin. Int. Fourier Variogram Mean 
Jp J op t J opt J opt 

2 2.5 44 27 38 36.3 
3 2.5 73 71 66 70.0 
4 5.0 139 142 129 136.7 
5 5.0 109 116 103 109.3 
6 2.5 65 80 90 78.3 
7 2.5 89 142 85 105.3 
8 5.0 5 5 12 7.3 
9 5.0 92 107 79 92.7 

(2 ) (3 ) 

(4 ) (5) 

(7) 

-, '. .. .. ... 11M _ ,.. _ ... I"" 11M ... ,_ 
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(8 ) (9 ) 

/=1 
I 

I 

., to. .. ... ... !.to ... "" ... ... 1_ ".. ,... 1_ 1_ .... ,_ '1'(16 .... '... _ 

Fig. 2: Original and smoothed profiles being analyzed 

5. Recommendations and Conclusions 

A comparison of the results above shows the discrepancies of the meth
ods presented. But first of all, the two-step procedure seems to be the 
right strategy, because observation noile leads to over-sampled DTH data 
to be avoided by an optimum data acquisition. Looking into further de
tail., the trill-and error approach of linear interpolation gives prom
ising results, if the deviations of the mean value are ~nalyzed. It is 
very robust and very fast - in the contrary to the Fourier approach, 
which needs the most computation time. The variogram evaluation is very 
sensitive against observation noise and thus requires optimum data 
smoothing. Therefore, the linear interpolation is highly recommended 
but in combination with a smoothing procedure, which can be Wiener fil
tering, spline approximations or moving average (MA) procedures. 
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