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ABSTRACT 

The conventional free net theory in photogrammetry has been 
constructed under the assumption that the three-dimensional 
similarity transformation is valid between the model and object 
spaces. However, unlike geodesy, a model formed from overlap
ped pictures can, in general, be transformed into the object by 
a three-dimensional projective transformation having fifteen 
independent coefficients. In this study, a new free net theory 
is derived based on this fact and is further applied to some 
simulated examples in order to clarify its practical characte
ristics .. 

INTRODUCTION 

The free network theory in geodesy was first derived by Meissl 
in 1962 and soon applied to photogrammetry very effectively 
(Ebner(1974), Gruen(1976), Granshaw(1980), and others). This 
free network theory in photogrammetry can readily be extended 
to the general case where a picture has eleven independent 
orientation parameters. In this paper, the general orientation 
problem of overlapped photographs is briefly described, the 
general free network theory is derived based on the general 
orientation theory of photographs, and its practical characte
ristics are discussed by applying it to simulated photographs. 

GENERAL ORIENTATION PROBLEM OF PHOTOGRAPHS 

We will begin with the discussion on the general orientation 
problem of a stereopair of photographs, because it is very 
important for deriving the general free network theory (The 
detailed discussion on this problem is seen in Okamoto(1981a, 
1981b)). The general collinearity equations relating an ob
ject point P(X,Y,Z) and its measured image point pc(xc'Yc) 
are described as 

= 

1 A9 X + 1 A1 0 Y + 1 A11 Z + 

( 1 ) 
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1 ASX + 1A6Y + 1A7 Z + 1A8 
Yc1 = 

1AgX + 1A10Y + 1A11 Z + 

for the left picture, and in the form 

2A1X + 2A2Y + 2A3 Z + 2A4 
x c 2 = 

2AgX + 2A10Y + 2A11 Z + 

( 2 ) 
2ASX + 2A6Y + 2A7 Z + 2A8 

Yc2 = 
2AgX + 2A10Y + 2A11 Z + 

for the right photograph, respectively. The condition that 
Equations 1 and 2 are valid for all object points photographed 
in common on the left and right pictures can be formulated as 

xcI IA9- IAI xcI lAlO- l A2 xcI lAll- l A3 xcl - l A4 

YcI lA9- l A5 Ycl lAlO- l A6 Ycl lAll - l A7 Ycl - l A8 
0 (3) = 

xc2 2A9-2Al xc2 2AIO-2A2 xc2 2All-2A3 xc2- 2A4 

Yc2 2A9-2A5 Yc2 2AIO-2A6 Yc2 2All-2A7 Yc2- 2A8 

which is equivalent to the coplanarity condition of correspon
ding rays. Under the condition of Equation 3, we can define 
one space (XM,YM,ZM) which can be transformed into the object 
space (X,Y,Z) by the three-dimensional projective transforma
tion having 1S independent elements, i.e., 

B13X + B14Y + B1S Z + 1 

BSX + B6Y + B7 Z + B8 

B13X + B14Y + B1S Z + 1 

BgX + B10Y + B11 Z + B12 

( 4) 

Equation 4 is equivalent to the projective one-to-one corre
spondence between the model and object spaces. Using the re
sults above, we can further find important characteristics of 
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the coplanarity condition that seven independent orientation 
parameters must mathematically be provided for the construction 
of the stereo model, because the 22 independent orientation 
parameters must become known for the unique determination of 
all photographed object points from their measured image coor-
dinates (xc 1'Yc1) and ,(x c 2'Yc2'. 

GENERAL FREE NETWORK THEORY IN PHOTOGRAMMETRY 

In the simultaneous determination of both orientation parame
ters of overlapped pictures and coordinates of photographed 
object points, the basic equations are the collinearity equa
tions. The general collinearity equations, i.e., 

A1X + A2Y + A3 Z + A4 
C/B Xc = = 

AgX + A10Y + A11 Z + 1 

ASX + A6Y + A7 Z + A8 
D/B Yc = = 

AgX + A10Y + A11 Z + 1 

can be linearized in the form 

Xc = FxO + (X/B)aAAl + (Y/B)OAA2 + (Z/B)OAA3 + (1/B)O~A4 
2 ' 2 2 

-(CX/B )OAA9 - (CY/B )OAAIO - (CZ/B )OAAll 
222 +«A1B-A9C)/B )OAX + (A2B-A10C)/B )OAY + «A3B-A11C)/B )OAZ 

Yc = FyO + (X/B)OAA5 + (Y/B)OAA6 + (Z/B)OAA7 + (l/B)OAAS 
2 2 2 

-(DX/B )OAA9 - (DY/B )OAAIO - (DZ/B )OAA11 

+«A5B-A9D)/B2)oAX + «ASB-A10D)/B2)OAY + «A7B-A11D)/B2)OAZ 

( 5 ) 

(6) 

Setting up Equation 6 for all photographs under consideration, 
we have a system of linear equations in a matrix form as 

AAX = C ( 7 ) 

in which 

A: a coefficient matrix of the system of linear equations 

Ax: a vector of corrections to unknowns 
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c: a vector of constants. 

Without object space controls the matrix A is singular and its 
rank deficiency is fifteen. In the general free network theory 
we have therefore fifteen linearly independent vectors satis
fying the following relationship (Mittermayer(1972), and 
Ebner(1974)): 

A G = 0 ( 8 ) 

where G is a matrix constructed from the 15 linearly independ
ent vectors, i.e., 

( 9 ) 

These 15 vectors can easily be found by linearizing the three
dimensional projective transformation (Equation 4) and expres
sed in the form of Equation (10) or Equation (11). In Equation 
(11) the first seven vectors are related to a linearized three
dimensional similarity transformation and the last eight vec
tors are associated with a model deformation. 

If measured image coordinates (xc'Yc) have random errors, the 
system of linearized observation equations can be given by 

v = AAX - L (1 2 ) 

where v is a vector of residuals to the observations. The free 
network adjustment is then carried out as follows: 

vTpv -----> min 
under the condition GTA~ = 0 

where P is a weight matrix of the observations .. 

TEST WITH SIMULATION MODELS 

The method presented in the previous sections was tested with 
simulated photographs. In the construction of the simulation 
models, three convergent photographs were considered to be 
employed and the image coordinates of 25 object points were 
calculated by means of the conventional collinearity equations 
under the following conditions(See Figure-1): 

flying height: 

focal length of the camera: 

picture format: 

convergent angles: 

maximum height difference among 
the 25 object points: 
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H = 1500m 

c = 15cm 

23 x 23cm2 

ca .. ± 20deg .. 

ca .. 100m 



T 
'1 =( AgAl' AgA2' AgA3' AgA4-Al' AgA5' AgA6' AgA7' AgAS-A5' AgAg' AgA10' AgAll' .•.... , 1, 0, 0, ..... ) 

T 
g2 =(A10A1,A10A2,A10A3,A10A4-A2,A10A5,A10A6,A10A7,A10AS-A6,A10Ag,A10A10,A10All'······, 0, 1, 0, ..... ) 

T 
'3 =(AllAl,AllA2,AllA3,AllA4-A3,AllA5,AllA6,AllA7,AllAS-A7,AllAg,AllA10,AllAll'······, 0, 0, 1, ..... ) 

T 
g4 =( Al , 0, 0, 0, A5, 0, 0, 0, Ag, 0, O, ...... ,-X, 0, 0, ..... ) 

T 
'5 =( A2, 0, 0, 0, A6 , 0, 0, 0, A10' 0, 0, ...... , O,-X, 0, ..... ) 

T 
'6 =( A3, 0, 0, 0, A7, 0, 0, 0, All' 0, 0, ...... , 0, O,-X, ..... ) 

T 
'7 =( 0, Al , 0, 0, 0, A5, 0, 0, 0, Ag, O, ...... ,-y, 0, 0, ..... ) 

T 's =( 0, A2, 0, 0, 0, A6 , 0, 0, 0, A10' 0, ...... , O,-Y, 0, ..... ) 
T 

'g = ( 0, A3 ° , 0, 0, A7, 0, 0, 0, All' 0, · · .... , 0, 0, - y , • • . • . ) 

T 
'10 =( 0, 0, Al , 0, 0, 0, A5, 0, 0, 0, Ag, ...... ,-Z, 0, 0, ..... ) 

T 
'11 =( 0, 0, A2, 0, 0, 0, A6, 0, 0, 0, A10 , ...... , O,-Z, 0, ..... ) 

T 
'12 =( 0, 0, A3, 0, 0, 0, A7, 0, 0, 0, All' ...... , 0, O,-Z, ..... ) 

T 
'13 =( A4 , 0, 0, 0, AS' 0, 0, 0, 1, 0, O, ...... ,XX,XY,XZ, ..... ) 

T 
'14 = ( 0 , A 4 ' 0 , ° , ° , AS ' 0 , 0 , 0 , 1 , 0, ...... , YX , YY , YZ , ..... ) 

T 
'15 =( 0, 0, A4 , 0, 0, 0, A8 , 0, 0, 0, 1, ...... ,ZX,ZY,ZZ, ..... ) 

(10) 
M o 
<0 



T 
'1 =( AgAl' AgA2' AgA3' AgA4-Al' AgA5' AgA6' AgA7' AgAS-A5' AgAg, AgAlO' AgAll '······, 1,0,0, ..... ) 

T 
'2 =(AlOAl,AlOA2,AlOA3,AlOA4-A2,AlOA5,AlOA6,AlOA7,AlOAS-A6,AlOAg,AlOAlO,AlOAll'······, 0, 1, 0, ..... ) 

T 
'3 =(AllAl,AllA2,AllA3,AllA4-A3,AllA5,AllA6,AllA7,AllAS-A7,AIIAg,AllAlO,AllAll'······, 0, 0, 1, ..... ) 

T 0, 0, -AlO ' O, ...... ,-y, X, 0, ..... ) , =( -A2 , AI' 0, -A6 , A5 , 0, Ag, 4 . 
T 0, 0, '5 =( A3 , -AI' A7 , 0, -A5 , 0, All' 0, - Ag, ...... , Z, 0, - X, ..... ) 

, T _( 
6 - 0, -A3 , A2 , 0, 0, -A7 , A6 , 0, 0, -All' AlO , ...... , O,-Z, y, ..... ) 

'7
T 

=( AI' A
2

, A3 , 0, A5 ' A6 , A7 , 0, Ag, AlO' All' · . · . · · , - X, - Y , - Z , ... · · ) 
V 

'ST =( A4' 0, 0, 0, AS' 0, 0, 0, 1, 0, 0, ...... ,XX, Xy , XZ , ..... ) (11) 0 
(0 

T 0, 0, 0, 0, ...... , YX , YY , YZ , ..... ) 'g =( A4' 0, AS' 0, 0, 0, 1, 
T 

'10 =( 0, 0, A4 , 0, 0, 0, AS' 0, 0, 0, 1 , ...... , Z X, ZY , Z Z , ..... ) 
T 0, 0, '11 =( AI' 0, A5 , 0, 0, 0, Ag, 0, o, ...... ,-X, 0, 0, ..... ) 
T 0, 0, 0, '12 =( A3 , A7 , 0, 0, 0, All' 0, 0, ...•.. , 0, o,-X, ..... ) 
T 0, 0, 0, 0, 0, o, ...... ,-Y, 0, 0, ..... ) '13 =( AI' A5 , 0, 0, Ag, 
T 

'14 =( 0, A2 , 0, 0, 0, A6 , 0, 0, 0, AlO' 0, ...... , O,-Y, 0, ..... ) 
T 

'15 =( 0, 0, A2, 0, 0, 0, A6 , 0, 0, 0, AlO , ...... , o,-Z, 0, ..... ) 
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• Photo graphed 
object point 

® Control point 

Figure-1: Three convergent photographs 

Then, the image coordinates are affinitively transformed as 

( 1 3 ) 

in which the six coefficients aji(j=1 , ••• 6; i=1 ,2,3) are given 
as shown in Table-1. 

Table-1: Coefficients of the affine transformation 

Photo.Nr .. a1 a2 a3 (mm) a4 a5 a6(mm) 

1 1 .03 0.04 110.10 0.02 0.98 -150.37 
2 0.99 0 .. 03 110.94 0 .. 02 1 .. 02 100.25 
3 1 .01 -0.03 -100.92 0.03 0 .. 98 -180.31 

Finally, the perturbed photo coordinates were provided in which 
the perturbation consisted of random normal deviates having a 
standard deviation of 5 microns. 

The free network theory is essentially a linear theory. Thus, 
we must have fairly good approximation values for unknowns 
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because mathematical models in photogrammetry are usually non
linear. Further, in order to obtain a high external accuracy 
of calculated object points we need an iterative calculation, 
because the solution depends upon the given approximation va
lues of the unknowns. In this investigation, a conventional 
orientation method(the DLT method(Abdel-Aziz and Karara(1971)) 
was first applied for obtaining the particular solutions 
with fixed control points. Then,the approximation values of 
the unknowns in the free network adjustment were calculated 
by contaminating the control point coordinates with random 
errors having a standard deviation of 10cm. The iterative cal
culation in this free network adjustment was performed by re
placing the approximation values for the control points by the 
true values in each iteration step. Also, only the general 
case employing the 15 linearly independent vectors was ana
lyzed. The calculation was carried out for following two kinds 
of control point arrangement(See Figure-2); 

(1) case A where we have an appropriate arrangement of five 
control points mathematically required. 

(2) case B in which the configuration of six control points is 
somewhat inadequate. 

case A case B 

Q ~ ( 
,. 
"-

\. 

l~ .1) .... (~ 1"\ 

Figure-2: Arrangement of control points 

In addition, fictitious observations with loose variances were 
introduced for both the orientation elements and object point 
coordinates. 

The obtained results regarding the standard error of unit weight, 
the average internal error of check points, and the average ex
ternal error are shown in Table-2. We can find in Table-1 the 
following characteristics; 

(1) The geometry of the used three convergent photographs was 
rather strong. Consequently, the conventional orientation 
method had a fairly good accuracy_ 
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Table-2: The obtained orientation results 

average internal average external 
case .A error at the error at the ao 

()Am) ground scale(cm) ground scale(cm) 

particular 
solution 2.9 4 .. 6 8.2 

A 

free net 
solution 2.7 3 .. 0 6.8 

particular 
solution 3 .. 1 5 .. 3 6 .. 8 

B 
free net 
solution 2.8 3. 1 6.5 

(2) Applying the free network adjustment, great improvements 
were recognized in the internal precision. 

(3) On the other hand, the improvements in the external preci
sion were not very great. 

(4) The solutions of the free network adjustment converged 
very slowly .. 

(5) The solution sometimes diverged when ver¥ high weight were 
given on the free network constraints (G Ax = 0) 

DISCUSSIONS AND CONCLUSIONS 

In this paper the conventional free network theory in photo
grammetry has been extended to the general case where a photo
graph has eleven independent orientation parameters. This gen
eral theory may be characterized by the fact that it is related 
to a linearized three-dimensional projective transformation, 
while the conventional one is associated with a linearized 
three-dimensional similarity transformation. Thus, model defor
mation can be potentially considered by applying this general 
theory to the analysis of overlapped photographs. 

The proposed method in its present form is applicable only to 
the general case and to a special case where we have measured 
distances as object space controls (in this special case the 
distances are fixed and the first six linearly independent 
vectors in Equation (11) are introduced in the free network 
adjustment). In other cases where we have constraints among 
the eleven coefficients of the general collinearity equations 
for each photograph we may find linearly independent vectors 
satisfying the conditions by rearranging the 15 linearly inde-



pendent vectors in Equation 10. It should, however, be noted 
that such constraints are object space controls in a wide sense 
and that the eleven coefficients of the general collinearity 
equations are independent in all cases in photogrammetry, even 
in the case of metric photography. Thus, if we have more than 
five control points, both the general orientation calculation 
and the general free network adjustment discussed in this paper 
is mathematically applicable to all cases in photogrammetry by 
neglecting the constraints among the eleven coefficients. 

The method presented has been tested with some simulated exam
ples. Through this investigation the proposed theory has been 
shown to be mathematically sound and useful in the analysis of 
overlapped photographs. However, in order to use this method 
effectively, various practical algorithms may be developed. 
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