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ABSTRACT. One o~ ~he classical problems on random screen 
di~~rac~ion is considered. where Cnon)~ransparen~ aper~ures are 
di over a dark C en~) screen. The analy~ical 

resul~ is ~o de~ermine an aper~ure dimension variance and other 
image s~a~is~ical parame~ers by using ~he Fourier ~ransform. The 
simula~ed and ac~ual images are op~ically processed. thereby 
confirming the theory developed. 

1. INTRODUCTION. The ma~hema~ical o~ image anal s 
involving some in~egral~ for example, Fourier ~rans~orm is often 
very similar to the known ~heoretical problem on interaction 
between a coheren~ electromagne~ic wave and a random screen or 
another randomly inhomogeneous medium. The general solution to 
the problem is rather bulky (1). Various simplified models of 
random screens have been developed for a~mospheric remo~e 

sensing [a] and s~a~is~ical optics (31. In this paper we 
consider some special model of random-screen ligh~ di~fraction 

and appl y it to the image pr ocessi ng so as ~o deter mi ne 
s~a~istical parameters of ac~ual images. 

a. RANDOM-DOT SCREEN MODEL. In many cases we deal with an image 
consis~ing of dark Cor bright) spots of some regular ~orm 
dispersed rather uniformly against a very brigh~ Cor dark) 
background. The simplest situation is a two-level image of 
partially transparent round apertures. which are randomly 
distributed over a rectangular and ~o~ally impermeable screen. 
Le~ an aper~ure ensemble be a realiza~ion of ~he probabili~y 

process in which ~he cen~ral coordina~es and ~he radii of 
apertures are random quanti~ies. 

In the Fourier-lens focal plane of a coherent optical 
analyzer we usually observe ~he in~ensity of ligh~ waves passing 
through ~he image ~ransparency, namely~ we ~ake ~he squared 
Fourier-transform modul us IF 12 of the transparency function f. 
The lat~er is a local ~ransparency 1 wi~hin each aperture of 
the number n and the square S • with nf=O on ~he ou~erside of S. 
For ~he sake of def·initeness. f\,y'e assume ~hat ~he probabili~y of 
aper~ure overlapping is negligible. Then, ~he Fourier ~ransform 
of all N aper~ures o~ ~he image ~ransparency is 

N 

FCf) = E lnII expCik x + ik y)dx dy I' (1) 
h::.4 11 2 

S" 
where Sn= {Cx-an)2+ Cy-bn)2= r:}; ~ tan and b n are the radius 
and ~he coordina~es of an aperture in ~he image plane Cx.y). 
respec~ively; C~,~ t~ ) are ~he coordina~es in ~he Fourier plane. 

1 ".2, 

In ~he reference frame of each aper~ure (x'= 
we can rewri~e (1) in ~he form: 

x-a f> 

n 
y~= y-b ), 

n 



N 

FCf") =[ lnexpCik, a n+ ik2,. bn)[ IIexP Cik
1 

xl' + ik2y t)dx'dy·] t (2) 

n=1 ,. 
S'I 

whe~e S' = Cx· 2 + y.2= ~2). n n . 
He~e we know t,hat, t,he tnner int,eg~al in (2) is t,he obvious 
~elat,ion for t,he F~aunhofer diffract,ion f~om a ~ound diaphragm 

Kn = II expCik t x· +i 

s 
n 

(3) 

which is homogeneous in the Fourier plane due t,o t,he homogeneit,y 
of t,he first-orde~ Bessel funct,ion J C.) of real argument,s. 

t 

For t,he sake of simplicit,y. let, all apertures have t,he same 
t,ransparency 1 =1 . Then. collecting t,he terms of (2)t which are 

1""1 dependent, on the aperture radii. into a separate sum. we have 

FCf) = 
anI 

k 

N 

exp Cik a + ik b) E r J Ckr ) 
t 2 n t n 

(4) 

n=t 

2 2 t/2 - -where k =(k + k) »21 and b a~e certain average coordinat,es of 
t 2 aperture centers Ca .b ). A detailed account, of the exponents of 

n n 
(2) will be taken separately_ 

For a fairly large statistical sample. we can replace 
summation (4) by t,he in'legration over t,he probabili ty densi ty 
WCr) of the aperture radius dist,ribution. 

00 

N I~w(r) J'l (kr)dr. (6) 

o 

Therefore. the mean light intensit,y in the focal planet i.e. 
the average Wiener spect,rum~ is equal t,o 

00 

< 2 I 2 NCr Wer) J t ekr)dr) . 

o 

3. SPECTRA AS DEPENDENT ON THE RADIUS DISTRIBUTION. Calculus of 
(5) requires. in general, a lengthy algebra. For instance~ let, 
the probability densit,y be a universal one-peak funct,ion 

Wer) = C (3-1 ar-r e It (7) 

where a and (3 are some free const,ant,s. while the normalizing 
0') 

const,ant C is defined by I Wer) dr= 1 C= a (3/rC(3) , re.) is 

~he gamma func~ion. Then. ~te in~egral 1= Jr rWCr) J~kr)dr equals 

o 



r((J+2) 
I == (8) 
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where P- .) is the first-kind associated Legendre function for 
negati ~ arguments. Wi th due account of the ganuna-:function 
properties~ Wiener spectrum (6) is 

(J2( (J+1) 2 Q4.2{3. 

(9) 

In the simplest case (J == 1. we have 

< IFCf) I == k Cl0) 

It is clear from (10) that there are no spectrum intensity 
maxima for a rather 'fIatt probability density W(r). 

If 
k 

we 
== k( 

interested in some small 
-r), the following expansion 

typical 
exists 

J (kr)== J (kr)+ k~r 
1 1 n 

dJ d
2
J 

d 
I - + ~ (kAr ... )2 I 1.- + .•. 

z z=kr c;;; .. dz2 Z=Jt.r 

N 

difference 

(11)" 

where r == N-.tI: r is the average empirical radi us and. hence. 
1"'1 

'1"'1=1 

the linear term in (11) is zero. In addition~ the cubic terms in 
(11) are alternating quantities and in our subsequent 
calculations we can restrict ourselves to the second-order 
accuracy 0 {(k~r )2). 

1"'1 

Let us consider the summation 

Introducing the empirical 
rewrite (12) in ~he form: 

N 

E rn J f (krn ) 
n=l 

radius 

Finally~ the ~o~al mean Wiener 

variance 

urn is 
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(k r ) + _:l [ k J (k r ) - k r J. (k r ) J) . 
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we 

(13) 

(14) 

As seen from (14). t.he radius variance lt as well as other high 
moment.a~ distort markedly conventional diffrac~ion (3). 

4. COMPLEX SPECTRAL COMPONENTS. The of (2),which 



are dependent- on 'lhe coordi nat-es and are independent- of" t-he 
radii. will be singled ou'l in'lo a common sum: 

F(f") == 
211'1 

k 
NrJ (kr 

1 

N 

E exp (ik1 a n + i (16) 
1"'1::::1 

To account- f"or t-he ar compl ex spec'lral componen'l of" t.he 
unif"orm dis'lribu'lion of" aper'lures~ we 'lha'l 'lhe apert.ures 
are placed a'l t.he knot.s of" a r ar grid: 

N 

G == E exp (ik 
n::::1 

+ i b == 
N 

ph 

where N~ and N2 are 'lhe numbers of" kno'ls on t.he 'lwo 
(N1 X N2,. == N). hand s are 'lhe gr i d constan'ls 
or'lhogonal direct-ions. Calculus of (16) elds 

si n (--::.--

sin 

sin C ............ _-

k s 
sin-2-

2 

(16) 

grid sides 
in mu'lually 

(17) 

I'l is eviden'l f"rom (17) t-ha'l in 'lhe spectrum t-here arises a 
reciprocal rect-angular grid having a very bri eent.ral 
For an i sot-ropi c sguare screen. where k • k ~ k, == N == It t.he 

2 2 grid s'leps h.s t-end 'lo 'lhe mean spacing . 

To illust-rat.e 'lhe ef"fec'l of" random deviat.ion Aa 
regular-grid knot.s. we can consider~ for 'lhe 
a one-dimensional randomly dist.ort-ed grid: 

from t.he 
iei 

'IN 'IN 
E e

ik
"@: E exp ikCph+t.ap )= EN e ikph

[l+ ikt.ap - ~Ct.ar) ... ]. (18) 
p::::1 p::::1 p::::1 

Proceeding t-o empirical s'lat.is'lical momen'la and omit.t-ing odd 
expansion t-erms. we f"ind t.ha'l 

N 2 
J: eiko.p == Gek)[1- ~ « ) 

2 
+ 

4-

« ) + ... ] • (19) 
p::::1 

.fN+1 
sin kh 

where Gek) == 
sin 

2 

Relat-ion (19) demonst-rat-es clearly t.hat. t-he spect-ral envelope 
2 may be highly modula'led a'l f"init-e values «Aa ) > and hi 

moment-a. The above considera'lion also remai id f"or random 
deviat-ions Abv ' Here one can consider tha'l 
«Aa~)1/2 == «Ab:)1/2 == (h - 2r)/G. Thus. 'lhe f"inal Wiener 
spec'lrum of" our model image is 
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Fig.1. Formation of spectrum (20) 

Fig.2. Poor sample of small apertures 
d1 (a) and its spectrum (b) 
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cao) 

where 0 2 
- 2- - 2 A = a[ KJ Ckr) k rJ1 (kr)] 

is ~he sum of terms describing ~he aperture radius 
dis~ribu~ion. k2 k~ 

B = [- "'2 <(1).ap )2> +- <(1).ap)4> .. 

is the analogous sum for t~eir spacing distribution. 6 2 (k) is 
~he coe~ficient defining a speckle structure of the Fourier 
~ransform_ 

We assume ~he interdependence of the various random quantities 
considered to be negligible. The shape of final spectrum (20) 
is explained by the graph of Fig. 1 plotted for small k. 
o < k < 10. Fig. 1 presents: (i) the undisturbed spectrum 
Me DC r J o Ckr) _of tJ'le ave~aged aperture; (ii) the spectrum 
modulation Mi= [rJo(kr) + A] by radius statistics; (iii) the 
additional modulation M~ = (i- 8 4

) by complex spectral 
.2 components (iv) the high-frequency content M~= 6Ck). i.e. 

the speckle structure of the spectrum; and (v) the resul ting 
.2 spectrum < IFI > = M M M M~ • respectively_ 

o to .2 .~ 

6. COHERENT OPTICAL PROCESSING OF SIMULATED IMAGES. To verify 
our model we have utilized the conventional optical Fourier 
processor [4]. A He-Ne laser of wavelength 63a.8 nm was used as 
a source of coherent light. The Fourier lens was 180 mm in 
diameter and had a focal distance of 3.7 m. We used also an 
immersion cell t.o avoid phase distortions introduced by a 
t.ransparency photofilm. The resul ting errors of est.ablishing 
spa~ial spectral freguencies were around ~hree per cent. while 
those in spec~ral in~ensi~y measuremen~s were defined by 
spec~ral speckles and were around ~en per cent. 

We have been able to preparat.e special images proximat.ing 
fairly well t.he developed mat.hematical model and t.hen we 
succeeded in their opt.ical processing. The image t.ransparencies 
and t.heir spec~ra are present.ed in Figs. 2 ~hrough 6. Here one 
can see two sor~s of round t.ransparen~ aper~ures wit.h diame~ers 
d = 2.a6 ± 0.06 and d = 4.36 ~ 0.06 mm p respect.ively, which are 
dlst.ribut.ed rat.her Irregularly over an impermeable square 
screen. 

The spect.rum of a poor sample of ~he small aper~ures d 1 (Fig. a) 
is virt.ually iden~ical t.o t.he Fraunhofer diffract.ion from a 
single round aper~ure and the spect.ral intensit.y level is close 
to t.hat of (3) Meanwhile the spectrum of a more 
represent.at.ive sample of d (Fig. 3) is. in general. analogous to 
~hat. of Fig.a alt.hough it is not.able for some peculiarit.ies. 
Namely. the former consists of dist.inct random speckles, as 
predicted by the theoret.ical term MJt and its central peak is 
split by the radius modulation Mi. Figs. 4 and 6 show the scale 
transform of images; for example)the spectrum of t.he apert.ures, 
d 2, (Fig.4) is uniformly con~ract.ed in comparison t.o that. of 
Fig.a. The image of Fig.6 contains apertures of the t.wo 
diameters. as the limiting case of random-radius 

IV-62 
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Fig.). More representative sample of 
d1 and ~ts spectrum 
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Fig.4. Scale trans~or.m of image and 
spectra: a sample of d2 
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Fig.5. Apertures of the two diameters 
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6. SPECTRAL IMAGES. 
Our t.heoret.ical model f"it.s very well t.he act.ual 
images ( Fi gs . 6a -8a) of" an ocean bot. t.om cover ed 
f"err c concret.ions. In Fig. 7a one can dist.inct.ly see a 
round lag among concret.ions. t.hat. may be used for image 
scaling. Figs. 6b-8b show a of t.he bot.t.om images. while 
Fig. 8b also gives a scale-grid spect.rum. All t.he a. as 
a whole. are speckled round spot.s of hi int.ensit.y at. t.heir 
per i y. The cent.r al in t.he a has been 
addit.ionally screened for t.he sake of" bet.t.er present.at.ion. The 
;;;l>1-I"c::::-...... ..Lf"ic ·cross· in t.he is t.he effect. of diffract.ion 
fr am t.he boundar i es of r ar images. Fi g. 9 ot.s t.he 

t.y of t.he of Fig. 6b. aver over 
along the direct.ion with t.he vert.ical. The 

tdip' in t.he middle of t.he at result.s :from t.he 
above-ment.ioned additional screen. 

The model devel here predict.s that t.he um lies in the 
central Airy area of the mean-radius apert.ure (concretion). The 

of int.ensi of wavenumbers near t.he half-di of 
is. primarilYt a st.atist.ical effect. of variat.ions 

in concret.ion dimensions and ngs. But. t.he former effect. is 
relat.ively weaker because. even at, hi y variable radii 

2 2 
r mi.n ~ r ~ rma}( = 2rrntn • the val ue of" k It-~ ble f"or the 
random modulation M1 i exceed k r /9. Meanwhile. under 
t.he act..ual condi t..i on t..he random modul ati on M :2 

~~'~~'~et.ion ngs is approximat..ely proport.ionall t..o 
»k In general~ our model may be hel t.o 

elaborat.e various numerical al t.hms t.o be used f"or 
det.ermining t..he variances of concret.ion dimensions and 

ngs. 

Pract.ically. coherent. cal processing may est.ablish t.he 
of" mi ner al sin an i nt.er r ar ea of" t..he ocean 

bot..t.om. Using t.he grid um (Fig. 8b) and t..he lag scale 
(Fig. 7a) we readily de:fine t..he most. probable dimensions of" 
concretions. Assuming t..hat. lat.t.er are cal in t..he f"orm 
and calculat.ing t.heir mean number over a cert.ain f"ic area. 
we est.ablish t..he t..ot.al mass of a mineral 1 ng on t..his sit..e of 
t..he sea bot.. t.om. 

7. CONCLUSIONS We have devel a stat.istical mat. hemat. i cal 
model o:f Ii diffract..ion from a ent.. screen 
randomly covered t..ransparent apert.ures. The cont..ribut..ion of 
random variat..ions in t..he aperture diamet..ers and ngs has 
been det.ermined. which st.r y affect.s t.he Fourier a. as 
compared t.o t.he convent.ional diffract.ion f"rom a si e round 
apert.ure. The t..heoret..ical conclusions have been verified 

mentally means of simulated random Screens used as 
in a laser Fourier processor. FinallYt we have 
realized a method for det.ermining t.he dimensions 

of" c concret.ions on t..he basis of" a coherent. 
s of" sea-bot.t.om mages. 
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Fig.9. Photometric density of the spectrum of Fig.6 


